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SYLLABUS: MATHEMATICAL MODELLING

Objectives:

This course aims to

• Provide rigorous instruction in fundamental mathematical concepts and skills pre-

sented in the context of real-world applications.

• Gain a working knowledge of core techniques behind mathematical modelling and

develop a basic ability to quantify certain phenomena associated with the physical

sciences Represent real-world systems in a mathematical framework.

Unit I: Mathematical Modelling through Ordinary Differential Equations of First

order Linear Growth and Decay Models - Non-Linear Growth and Decay Models - Com-

partment Models - Dynamics problems - Simple problems.

Unit II: Mathematical Modelling through Systems of Ordinary Differential Equa-

tions of First Order Population Dynamics - Epidemics - Compartment Models - Eco-

nomics - Medicine, Arms Race, Battles and International Trade - Simple problems.

Unit III: Mathematical Modelling through Ordinary Differential Equations of Sec-

ond Order Planetary Motions - Circular Motion and Motion of Satellites - Mathematical

Modelling through Linear Differential Equations of Second Order - Miscellaneous Math-

ematical Models - Simple problems.

Unit IV: Mathematical Modelling through Difference Equations Simple Models -

Basic Theory of Linear Difference Equations with Constant Coefficients - Economics and

Finance - Population Dynamics and Genetics - Probability Theory - Simple problems.

Unit V: Mathematical Modelling through Graphs Solutions that can be Modelled

through Graphs - Mathematical Modelling in Terms of Directed Graphs, Signed Graphs,

Weighted Digraphs - Simple problems.
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Unit 1

Mathematical Modelling Through First

Order Ordinary Differential Equations

Objectives:

• To model and analyze population growth model (linear & nonlinear) and decay

models that change over time.

• To study the spread of technological innovations and infectious diseases

• To discuss the basics of the law of mass action: chemical reactions

• Understand the dynamical problems like simple harmonic motion, motion under

gravity in a resisting medium, motion of a rocket and orthogonal trajectory.

1.1 Introduction

Mathematical Modelling in terms of differential equations arises when the situation

modelled involves some continuous variable(s) varying with respect to some other con-

tinuous variable(s) and we have some reasonable hypotheses about the rates of change

of dependent variable(s) with respect to independent variable(s).

When we have one dependent variable x (say population size) depending on one

independent variable (say time t ), we get a mathematical model in terms of an ordinary

differential equation of the first order, if the hypothesis is about the rate of change dx/dt.
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The model will be in terms of an ordinary differential equation of the second order if

the hypothesis involves the rate of change of dx/dt.

If there are a number of dependent continuous variables and only one independent

variable, the hypothesis may give a mathematical model in terms of a system of first or

higher order ordinary differential equations.

If there is one dependent continuous variable (say velocity of fluid u ) and a number

of independent continuous variables (say space coordinates x, y, z and time t ), we get a

mathematical model in terms of a partial differential equation. If there are a number of

dependent continuous variables and a number of independent continuous variables, we

can get a mathematical model in terms of systems of partial differential equations.

Mathematical models in term of ordinary differential equations will be studied in

this and the next two chapters.

1.2 Linear Growth and Decay Models

1.2.1 Populational Growth Models

Let x(t) be the population size at time t and let b and d be the birth and death rates,

i.e. the number of individuals born or dying per individual per unit time.

Then in time interval (t, t+ ∆t), the numbers of births and deaths would be bx∆t+

o(∆t) and dx∆t + o(∆t) where ∆t is an infinitesimal which approaches zero as ∆t

approaches zero, so that

x(t+ ∆t)− x(t) = (bx(t)− dx(t))∆t+ 0(∆t), (1.2.1)

so that dividing by ∆t and proceeding to the limit as ∆t→ 0, we get

dx

dt
= (b− d)x (1.2.2)

= ax (say)

dx

x
= adt
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Integrating (1.2.2), we get

∫ dx

x
= a

∫
dt

log x = at+ log c

log x− log c = at

log
(
x

c

)
= at

x

c
= eat

x(t) = c exp(at) (since exp(at) = eat)

By taking t = 0, we get

x(0) = c exp(0)

c = x(0) (since e0=1)

Then, we have

x(t) = x(0) exp(at)

so that the population grows exponentially if a > 0, decays exponentially if a < 0 and

remains constant if a = 0 (Figure 1.1)

Figure 1.1

(i) If a > 0, the population will become double its present size at time T , where

2x(0) = x(0) exp(aT )

exp(aT ) = 2

T = 1
a

ln 2 = (0.69314118)a−1
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T is called the doubling period of the population and it may be noted that this

doubling period is independent of x(0).

It depends only on a and is such that greater the value of a (i.e. greater the difference

between birth and death rates), the smaller is the doubling period.

(ii) If a < 0, the population will become half its present size in time T ′ when

1
2x(0) = x(0) exp (aT ′)

exp (aT ′) = 1
2

T ′ = 1
a

ln 1
2 = −(0.69314118)a−1

It may be noted that T ′ is also independent of x(0) and since a < 0, T ′ > 0. T ′ may

be called the half-life (period) of the population and it decreases as the excess of death

rate over birth rate increases.

1.2.2 Growth of Science and Scientists

Let S(t) denote the number of scientists at time t, bS(t)∆t + o(∆t) be the number of

new scientists trained in time interval (t, t+ ∆t).

Let d∆S(t)∆t + o(∆t) be the number of scientists who retire from science in the

same period, then the above model applies and the number of scientists should grow

exponentially.

The same model applies to the growth of Science, Mathematics and Technology.

Thus if M(t) is the amount of Mathematics at time t, then the rete of growth of

Mathematics is proportional to the amount of Mathematics, so that

dM

dt
= aM (1.2.3)

dM

M
= adt

Integrating (1.2.3), we get

∫ dM

M
= a

∫
dt

logM = at+ log c

10



logM − log c = at

log
(
M

c

)
= at

M

c
= eat

M(t) = c exp(at)

By taking t = 0, we get

M(0) = c exp(0)

c = M(0) (since e0=1)

Then we have

M(t) = M(0) exp(at)

Thus according to this model, Mathematics, Science and Technology grow at an

exponential rate and double themselves in a certain period of time.

During the last two centuries this doubling period has been about ten years. This

implies that if in 1900, we had one unit of Mathematics, then in 1910, 1920, 1930, . . . 1980

we have 2, 4, 8, 16, 32, 64, 128, 256 unit of Mathematics and in 2000AD we shall have

about 1000 units of Mathematics.

This implies that 99.9% of Mathematics that would exist at the end of the present

century would have been created in this century and 99.9% of all mathematicians who

ever lived, have lived in this century.

The doubling period of mathematics is 10 years and the doubling period of the human

population is 30 − 35 years. These doubling periods cannot obviously be maintained

indefinitely because then at some point of time, we shall have more mathematicians

than human beings.

Ultimately the doubling period of both will be the same, but hopefully this is a long

way away.

Remark 1.2.1. This model also shows that the doubling period can be shortened by

having more intensive training programmes for mathematicians and scientists and by

creating conditions in which they continue to do creative work for longer durations in

life.
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1.2.3 Effects of Immigration and Emigration on Population Size

If there is immigration into the population from outside at a rate proportional to the

population size, the effect is equivalent to increasing the birth rate.

Similarly if there is emigration from the population at a rate proportional to the

population size, the effect is the same as that of increase in the death rate.

If however immigration and emigration take place at constant rate i and e respec-

tively, equation (1.2.2) is modified to

dx

dt
= bx− dx+ i− e = ax+ k (1.2.4)

where a = b− d, and k = i− e.

dx

dt
= a(x+ k

a
)

dx

x+ k
a

= adt

Integrating (1.2.4) we get

∫ dx

x+ k
a

= a
∫
dt

log(x+ k

a
) = at+ log c

log
(
x+ k

a

)
− log c = at

log(
(x+ k

a
)

c
= at

(x+ k
a
)

c
= eat

x(t) + k

a
= c exp(at)

By taking t = 0, we get

x(0) + k

a
= c exp(0)

c = x(0) + k

a
(since e0=1)
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Then we have

x(t) + k

a
=
(
x(0) + k

a

)
eat

The model also applies to growth of populations of bacteria and microorganisms, to

the increase of volume of timber in forest, to the growth of malignant cells etc. In the

case of forests planting of new plants will correspond to immigration and cutting of trees

will correspond to emigration.

1.2.4 Interest Compounded Continuously

Let the amount at time t be x(t) and let interest at rate r per unit amount per unit

time be compounded continuously then

x(t+ ∆t) = x(t) + rx(t)∆t+ o(∆t)

giving
dx

dt
= xr (1.2.5)

dx

x
= rdt

Integrating (1.2.2), we get

∫ dx

x
= a

∫
dt

log x = rt+ log c

log x− log c = rt

log(x
c

) = rt

x

c
= ert

x(t) = c exp(rt)

By taking t = 0, we get

x(0) = c exp(0)

c = x(0) (since e0=1)
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Then, we have

x(t) = x(0)ert (1.2.6)

This formula can also be derived from the formula for compound interest

x(t) = x(0)
(

1 + r

n

)nt
(1.2.7)

when interest is payable n times per unit time, by taking the limit as n→∞. In fact

comparison of (1.2.6) and (1.2.7) gives us two definitions of the trancendental number e

viz.

(i) e is the amount of an initial capital of one unit invested for one unit of time when

the interest at unit rate is compounded continuously

(ii) e = Ltn→∞
(
1 + 1

n

)n
Also from (1.2.6) if x(t) = 1, then

1 = x(0)ert =⇒ x(0) = e−rt

so that e−rt is the present value of a unit amount due one period hence when interest

at the rate r per unit amount per unit time is compounded continuously.

Problem 1.2.2. List out the decay models and write short notes.

Solution.

1. Radio-Active Decay

Many substances undergo radio-active decay at a rate proportional to the amount of

the radioactive substance present at any time and each of them has a half-life period.

For uranium 238 it is 4.55 billion years.

For potassium it is 1.3 billion years. For theorem it is 13.9 billion years. For rubidium

it is 50 billion years while for carbon 14 it is only 5568 years and for white lead it is only

22 years.

In radiogeology, these results are used for radioactive dating. Thus the ratio of radio-

carbon to ordinary carbon (carbon 12) in dead plants and animals enables us to estimate

their time of death. Radioactive dating has also been used to estimate the age of the

solar system and of earth as 45 billion years.
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2. Decrease of Temperature

According to Newton’s law of cooling, the rate of change of temperature of a body is

proportional to the difference between the temperature T of the body and temperature

Ts of the surrounding medium, so that

dT

dt
= k (T − Ts) , k < 0

and

T (t)− Ts = (T (0)− Ts) ekt

and the excess of the temperature of the body over that of the surrounding medium

decays exponentially.

3. Diffusion

According to Fick’s law of diffusion, the time rate of movement of a solute across

a thin membrane is proportional of the area of the membrane and to the difference in

concentrations of the solute on the two sides of the membrane.

If the area of the membrane is constant and the concentration of solute on one side is

kept fixed at a and the concentration of the solution on the other side initially is c0 < a,

then Fick’s law gives

dc

dt
= k(a− c), c(0) = c0

so that

a− c(t) = (a− c(0))e−kt

and c(t)→ a as t→∞, whatever be the value of c0.

4. Change of Price of a Commodity

Let p(t) be the price of a commodity at time t, then its rate of change is proportional

to the difference between the demand d(t) and the supply s(t) of the commodity in the

market so that
dp

dt
= k(d(t)− s(t))

15



where k > 0, since if demand is more than the supply, the price increases. If d(t)

and s(t) are assumed linear functions of p(t), i.e. if

d(t) = d1 + d2p(t), s(t) = s1 + s2p(t), d2 < 0, s2 > 0

we get

dp

dt
= k (d1 − s1 + (d2 − s2) p(t)) = k(a− βp(t)), β > 0

where α = d1 − s1, and β = d2 − s2,

or

dp

dt
= K (pe − p(t)) .

where pe is the equilibrium price, so that

pe − p(t) = (pe − p(0)) e−kt

and

p(t)→ pe as t→∞

Let us sum up:

• The population growth model.

• Development of science and scientists.

• Changes in population size due to immigration and emigration.

• Interest at the rate r per unit time is compounded continuously.
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Check your progress:

1. What happens to the population size if the difference between birth and death

rates are zero?

2. Explain the immigration and emigration to increase of volume of timber in forest?

1.3 Non-Linear Growth and Decay Models

1.3.1 Logistic Law of Population Growth

As population increases, due to overcrowding and limitations of resources, the birth rate

b decreases and the death rate d increases with the population size x. The simplest

assumption is to take

b = b1 − b2x, d = d1 + d2x, b1, b2, d1, d2 > 0

so that dx
dt

= (b− d)x, becomes

dx

dt
= ((b1 − d1)− (b2 − d2)x) = x(a− bx), a > 0, b > 0 (1.3.8)

dx

x(a− bx) = dt

1
a

(1
x

+ b

a− bx

)
dx = dt (1.3.9)

Integrating (1.3.9), we get

∫ (1
x

+ b

a− bx

)
dx = a

∫
dt

log x− log(a− bx) = at+ log c

log x

a− bx
− log c = at

log x

c(a− bx) = at

x

c(a− bx) = eat
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x(t) = c(a− bx(t)) exp(at)

By taking t = 0, we get

x(0) = c(a− bx(0)) exp(0)

c = x(0)
a− bx(0)

Then, we have
x(t)

a− bx(t) = x(0)
a− bx(0)e

at (1.3.10)

Equations (1.3.8) and (1.3.10) show that

(i) x(0) < a/b⇒ x(t) < a | b⇒ dx/dt > 0⇒ x(t) is a monotonic increasing function

of t which approaches a/b as t→∞.

(ii) x(0) > a/b⇒ x(t) > a/b⇒ dx/dt < 0⇒ x(t) is a monotonic decreasing function

of t which approaches a/b as t→∞.

Now from (1.3.8)

d2x

dt2
= a− 2bx

so that d2x/dt2 R 0 according as x R a/2b. Thus in case (i) the growth curve is

convex if x < a/2b and is concave if x > a/2b and it has a point of inflexion at x = a/2b.

Thus the graph of x(t) against t is as given in Figure 1.2.

Figure 1.2

If x(0) < a/2b, x(t) increases at an increasing rate till x(t) reaches a/2b and then it

increases at a decreasing rate and approaches a/b at t→∞

If a/2b < x(0) < a/b, x(t) increases at a decreasing rate and approaches a/b as t→∞

18



If x(0) = a/b, x(t) is always equal to a/b

If x(0) > a/b, x(t) decreases at a decreasing absolute rate and approaches a/b as

t→∞.

1.3.2 Spread of Technological Innovations and Infectious Diseases

Let N(t) be the number of companies which have adopted a technological innovation till

time t, then the rate of change of the number of these companies depends both on the

number of companies which have adopted this innovation and on the number of those

which have not yet adopted it, so that if R is the total number of companies in the

region

dN

dt
= kN(R−N) (1.3.11)

which is the logistic law and shows that ultimately all companies will adopt this inno-

vation.

Similarly if N(t) is the number of infected persons, the rate at which the number

of infected persons increases depends on the product of the numbers of infected and

susceptible persons.

As such we again get (1.3.11), where R is the total number of persons in the system.

It may be noted that in both the examples, while N(t) is essentially an integer-

valued variable, we have treated it as a continuous variable. This can be regarded as an

idealisation of the situation or as an approximation to reality.

1.3.3 Rate of Dissolution

Let x(t) be the amount of undissolved solute in a solvent at time t and let c0 be the

maximum concentration or saturation concentration.

i.e. the maximum amount of the solute that can be dissolved in a unit volume of the

solvent. Let V be the volume of the solvent.

It is found that the rate at which the solute is dissolved is proportional to the amount

of undissolved solute and to the difference between the concentration of the solute at

time t and the maximum possible concentration, so that we get
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dx

dt
= kx(t)

(
x(0)− x(t)

V
− c0

)
= kx(t)

V
((x0 − c0V )− x(t))

1.3.4 Law of Mass Action: Chemical Reactions

Two chemical substances combine in the ratio a : b to form a third substance Z.

If z(t) is the amount of the third substance at time t, then a proportion az(t)/(a+ b)

of it consists of the first substance and a proportion bz(t)/ (a + b) of it consists of the

second substance.

The rate of formation of the third substance is proportional to the product of the

amount of the two component substances which have not yet combined together.

If A and B are the initial amounts of the two substances, then we get

dz

dt
= k

(
A− az

a+ b

)(
B − bz

a+ b

)

This is the non-linear differential equation for a second order reaction.

Similarly for an nth order reaction, we get the non-linear equation

dz

dt
= k (A1 − a1z) (A2 − a2z) . . . (An − anz)

where a1 + a2 + . . .+ an = 1.

Let us sum up:

• Logistic law of population growth.

• Transmission of infectious diseases and technological advancements.

• Law of mass action: The third substance is proportional to the product of two

component substances.
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Check your progress:

1. Explain logistic growth model

2. Explain the solution of the chemical reactions in Law of Mass Action.

1.4 Compartment Models

In the last two chapters, we got mathematical models in terms of ordinary differential

equations of the first order, in all of which variables were separable. In the present

chapter, we get models in terms of linear differential equations of first order.

We also use here the principle of continuity i.e. that the gain in amount of a substance

in a medium in any time is equal to the excess of the amount that has entered the medium

in the time over the amount that has left the medium in this time.

1.4.1 A Simple Compartment Model

Let a vessel contain a volume V of a solution with concentration c(t) of a substance at

time t (Figure 1.3).

Let a solution with constant concentration C in an overhead tank enter the vessel at

a constant rate R and after mixing thoroughly with the solution in the vessel, let the

mixture with concentration c(t) leave the vessel at the same rate R so that the volume

of the solution in the vessel remains V .

Using the principle of continuity, we get

V (c(t+ ∆t)− c(t)) = Rc∆t−Rc(t)∆t+ 0(∆t)

giving

V
dc

dt
+Rc = RC

dc

dt
+ R

V
c = RC

V
(1.4.12)
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Figure 1.3

Solving (1.4.12), we get

A. E. is m+ R

V
= 0

m = −R
V

C.F = Ae−
R
V
t

P.I = − RCe0t

V (D + R
V

)
= Ce0t

= C

∴ c(t) = Ae−
R
V
t + C

By taking t = 0, we get
c(0) = Ae−

R
V

0 + C

A = c(0)− C

Then, we have
c(t) = (c(0)− C) exp

(
−R
V
t
)

+ C

c(t) = c(0) exp
(
−R
V
t
)

+ C
(

1− exp
(
−R
V
t
))

.
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Figure 1.4

As t→∞, c(t)→ C, so that ultimately the vessel has the same concentration as the

overhead tank. Since

c(t) = C − (C − c0) exp
(
−R
V
t
)

If C > c0, the concentration in the vessel increases to C, on the other hand if C < c0,

the concentration in the vessel decreases to C (see Figure 1.4).

If the rate R′ at which the solution leaves the vessel is less than R, the equations of

continuity gives

d

dt
[(V0 + (R−R′) t) c(t)]

= RC −R′(ct)

where V is the initial volume of the solution in the vessel. This is also a linear differential

equation of the first order.

1.4.1 Diffusion of Glucose or a Medicine in the Blood Stream

Let the volume of blood in the human body be V and let the initial concentration of

glucose in the blood stream be c(0).

Let glucose be introduced in the blood stream at a constant rate I.

Glucose is also removed from the blood stream due to the physiological needs of the
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human body at a rate proportional to c(t), so that the continuity principle gives

V
dc

dt
= I − kc

Now let a dose D of a medicine be given to a patient at regular intervals of duration

T each.

The medicine also disappears from the system at a rate proportional to c(t), the

concentration of the medicine in the blood stream, then the differential equation given

by the continuity principle is

V
dc

dt
= −kc (1.4.13)

dc

c
= −k

V
dt

Integrating (1.2.3), we get

∫ dc

c
= −k

V

∫
dt

log c = −k
V
t+ logD

log c− logD = −k
V
t

log( c
D

) = −k
V
t

c

D
= e

−k
V
t

c(t) = D exp
(−k
V
t
)

Then, we have

c(t) = D exp
(
− k
V
t

)
, 0 6 t < T

At time T , the residue of the first dose is D exp
(
− k
V
T
)

and now another dose D is given

so that we get

c(t) =
(
D exp

(
− k
V
T

)
+D

)
exp

(
− k
V

(t− T )
)
,

= D exp
(
− k
V
t

)
+D exp

(
− k
V

(t− T )
)
,

24



T 6 t < 2T

The first term gives the residual of the first dose and the second term gives the

residual of the second dose. Proceeding in the same way, we get after n doses have been

given

c(t) =D exp
(
− k
V
t

)
+D exp

(
− k
V

(t− T )
)

+D exp
(
− k
V

(t− 2T )
)

+ . . .+D exp
(
− k
V

(t− n− 1T )
)

=D exp
(
− k
V
t

)(
1 + exp

(
k

V
T

)
+ exp

(
2k
V
T

)

+ . . .+ exp
(

(n− 1) k
V
T

))

=D exp
(
− k
V
t

) exp
(
n k
V
T
)
− 1

exp
(
k
V
T
)
− 1

, (n− 1)T 6 t < nT

c(nT − 0) =D
1− exp

(
− k
V
nT
)

exp
(
kT
V

)
− 1

c(nT + 0) =D
exp

(
kT
V

)
− exp

(
− k
V
nT
)

exp
(
kT
V

)
− 1

Thus the concentration never exceeds D/
(
1− exp

(
−kT

V

))
. The graph of c(t) is

shown in Figure 1.4.

Figure 1.5

Thus in each interval, concentration decreases.

In any interval, the concentration is maximum at the beginning of this interval and

thus maximum concentration at the beginning of an interval goes on increasing as the
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number of intervals increases, but the maximum value is always below D/
(
1− e−kT/V

)
.

The minimum value in an interval occurs at the end of each interval. This also

increases, but it lies below D/(exp(kT/V )− 1).

The concentration curve is piecewise continuous and has points of discontinuity at

T, 2T, 3T, . . .

By injecting glucose or penicillin in blood and fitting curve c(t) to the data, we can

estimate the value of k and V . In particular this gives a method for finding the volume

of blood in the human body.

Remark 1.4.1. The Case of a Succession of Compartments

Let a solution with concentration c(t) of a solute pass successively into n tanks in

which the initial concentrations of the solution are c1(0), c2(0), . . ., cn(0).

The rates of inflow in each tank is the same as the rate of outflow from the tank. We

have to find the concentrations c1(t), c2(t) . . . cn(t) at time t. We get the equations

V
dc1

dt
= Rc−Rc1

V
dc2

dt
= Rc1 −Rc2

· · · · · ·

V
dcn
dt

= Rcn−1 −Rcn

By solving the first of these equations, we get c1(t). Substituting the value of c1(t)

and proceeding in the same way, we can find c3(t), . . . , cn(t).

Let us sum up:

• A simple compartmental model.

• A method for finding the volume of blood in the human body and its remarks.

Check your Progress:

1. A patient was given 0.5 micro-Curies (uci) of a type of iodine. Two hours later 0.5

uci had been taken up by his thyroid. How much would have been taken by the
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thyroid in two hours if he had been given 15uci?

2. Explain compartmental models.

1.5 Dynamics Problems

1.5.1 Simple Harmonic Motion

Let a particle travel a distance x in time t in a straight line, then its velocity v is given

by dx/dt and its acceleration is given by

dv/dt = (dv/dx)(dx/dt) = vdv/dx = d2x/dt2

Here a particle moves in a straight line in such a manner that its acceleration is

always proportional to its distance from the origin and is always directed towards the

origin, so that

v
dv

dx
= −µx (1.5.14)

vdvdx = −µxdx

Integrating

v2 = −µx2 + A,

where the particle is initially at rest at x = a (v=0).

A = µa2

=⇒ v2 = µ
(
a2 − x2

)
,

Equation (1.5.15) gives

dx

dt
= −√µ

√
a2 − x2

We take the negative sign since velocity increases as x decreases (Figure 1.6).
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Figure 1.6

Integrating again and using the condition that at t = 0, x = a

x(t) = a cos√µt

so that

v(t) = −a√µ sin√µt,

Thus in simple harmonic motion, both displacement and velocity are periodic func-

tions with period 2π/√µ.

The particle starts from A with zero velocity and moves towards 0 with increasing

velocity and reaches 0 at time π/2√µ with velocity √µa.

It continue to move in the same direction, but now with decreasing velocity till it

reaches A′ (0A′ = a) where its velocity is again zero.

It then begins moving towards 0 with increasing velocity and reaches 0 with velocity
√
µa and again comes to rest at A after a total time period 2π/√µ. The periodic motion

then repeats itself.

Figure 1.7

As one example of SHM, consider a particle of mass m attached to one end of a

perfectly elastic string, the other end of which is attached to a fixed point 0 (Figure
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1.7). The particle moves under gravity in vacuum.

Let l0 be the natural length of the string and let a be its extension when the particle

is in equilibrium so that by Hooke’s law

mg = T0 = λ
a

l0

where λ is the coefficient of elasticity. Now let the string be further stretched a distance

c and then the mass be left free. The equation of motion which states that mass x

acceleration in any direction = force

On the particle in that direction, gives

mv
dv

dx
= mg − T

= λ
a

l0
− λa+ x

l0

= −λx
l0

or

v
dv

dx
= λ

m

x

l0
= −gx

a

which gives a simple harmonic motion with time period 2π
√

a
g
.

1.5.1 Motion Under Gravity in a Resisting Medium

A particle falls under gravity in a medium in which the resistance is proportional to the

velocity. The equation of motion is

m
dv

dt
= mg −mkv

or
dv

dt
= g − kv

dv

dt
= k(g

k
− v)

dv

dt
= k(V − v); V = g

k
dv

V − v
= kdt
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Integrating

dv

V − v
= kdt

log(V − v) = kt+ logA

V − v = Ae−kt (1.5.15)

If the particle starts from rest with zero velocity, i.e v=0 when t=0. Equation (1.5.15)

gives
V = Ae0

A = V

∴ v = V
(
1− e−kt

)
so that the velocity goes on increasing and approaches the limiting velocity g/k as

t→∞. Replacing v by dx/dt, we get

dx

dt
= V

(
1− e−kt

)

Integrating and using x = 0 when t = 0, we get

∫
dx = V

(
1− e−kt

) ∫
dt

x(t) = V (t− e−kt

−k
) + A

0 = V (0 + 1
k

) + A (x=0, t=0)

A = −V
k

Thus, x = V t+ V e−kt

k
− V

k

1.5.1 Motion of a Rocket

As a first idealisation, we neglect both gravity and air resistance. A rocket moves forward

because of the large supersonic velocity with which gases produced by the burning of the

fuel inside the rocket come out of the converging-diverging nozzle of the rocket (Figure

1.8).

Let m(t) be the mass of the rocket at time t and let it move forward with velocity
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Figure 1.8

v(t) so that the momentum at time t is m(t)v(t).

In the interval of time (t, t+ ∆t), the mass of the rocket becomes

m(t+ ∆t) = m(t) + dm

dt
∆t+ o(∆t)

Since the rocket is losing mass, dm/dt is negative and the mass of gases −dm/dt∆t

moves with velocity u relative to the rocket, i.e. with a velocity v(t + ∆t) − u relative

to the earth so that the total momentum of the rocket and the gases at time t+ ∆t is

m(t+ ∆t)v(t+ ∆t)− dm

dt
∆t(v(t+ ∆t)− u)

Since we are neglecting air resistance and gravity, there is no external force on the

rocket and as such the momentum is conserved, giving the equation

m(t)v(t) =
(
m(t) + dm

dt
∆t
)(

v(t) + dv

dt
∆t
)

− dm

dt
∆t(v − u) + o(∆t)2

Simplifying and dividing by ∆t and proceeding to the limit as ∆t→ 0, we get

m(t)v(t) =m(t)v(t) + dm

dt
v(t)∆t+m(t)dv

dt
∆t+ dm

dt
v(t)dv

dt
(∆t)2

− dm

dt
v(t)∆t+ dm

dt
u(t)∆t+ 0(∆t)2

m(t)dv
dt

=− udm
dt

(By dividing ∆ t and ∆t→ 0 )
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or
dm

m
= −1

u
dv

By integrating and assuming that the rocket starts with zero velocity,

logm(t) = −1
u
v(t) + logA

logm(0) = −1
u

(0) + logA (t=0, v=0)

logA = logm(0)

Thus

log m(t)
m(0) = −v(t)

u
(1.5.16)

As the fuel burns, the mass of the rocket decreases.

Initially the mass of the rocket = mP +mF +xS when mP is the mass of the pay-load,

mF is the mass of the fuel and mS is the mass of the structure.

When the fuel is completely burnt out, mF becomes zero and if vB is the velocity of

the rocket at this stage, when the fuel is all burnt, then (1.5.16) gives

vB = u ln mP +mF +mS

mP +mS

= u ln
(

1 + mF

mP +mS

)

This is the maximum velocity that the rocket can attain and it depends on the velocity

u of efflux of gases and the ratio mF/ (mP +mS).

The larger the values of u and mF/ (mP +mS), the larger will be the maximum

velocity attained.

For the best modern fuels and structural materials, the maximum velocity this gives

is abount 7 km/sec.

In practice it would be much less since we have neglected air resistance and gravity,

both of which tend to reduce the velocity.

However if a rocket is to place a satellite in orbit, we require a velocity of more than

7 km/sec.

The problem can be overcome by using the concept of multi-stage rockets.

The fuel may be carried in a number of containers and when the fuel of a container

is burnt up, the container is thrown away, so that the rocket has not to carry any dead
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weight.

Thus in a three-stage rocket, let mF1 ,mF2 ,mF3 by the masses of the fuels and

mS1 ,mS2 ,mS3 be the three corresponding masses of containers, then velocity at the

end of the first stage is

v1 = u ln mP +mF1 +mS1 +mF2 +mS2 +mF3 +mS3

mP +mF2 +mS2 +mF3 +mS3

At the end the second stage, the velocity is

v2 = v1 + u ln mP +mF2 +mF3 +mS3

mP +mF3 +mS3

and at the end of the third stage, the velocity

v3 = v2 + u ln mP +mF3

mP

In this way, a much larger velocity is obtained than can be obtained by a single-stage

rocket.

Let us sum up:

• Simple harmonic motion with time period.

• Gravitational motion in a resistive medium.

• Motion of a rocket.

Check your progress:

1. What happens to the mass of the rocket when the fuel burns?

2. Explain the Periodic motion of the simple harmonic motion.
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1.6 Simple Geometrical Problems

Many geometrical entities can be expressed in terms of derivatives and as such relations

between these entities can give rise to differential equations whose solution will give us

a family of curves for which the given relation between geometrical entities is satisfied.

(i) Find curves for which tangent at a point is always perpendicular to the line joining

the point to the origin.

The slope of the tangent is dy/dx and the slope of line joining the point (x, y) to the

origin is y/x and since these lines are given to be orthogonal

dy

dx
= −x

y

Integrating

∫
ydy = −

∫
xdx

y2 = −x2 + a2

x2 + y2 = a2

which represents a family of concentric circle.

(a) (b) (c)

Figure 1.9

(ii) Find curves for which the projection of the normal on the x-axis is of constant

length.

This condition gives

y
dy

dx
= k
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Integrating

y2 = 2kx+ A,

which represents a family of parabolas, all with the same axis and same length of latus

rectum.

(iii) Find curves for which tangent makes a constant angle with the radius vector.

Here it is convenient to use polar coordinates and the conditions of the problem gives

r
dθ

dr
= tanα

Integrating ∫ dr

r
= cotα

∫
dθ

log r = θ cotα + logA

log r − logA = θ cotα

log r

A
= θ cotα

r

A
= eθ cotα

r = Aeθ cotα

which represents a family of equiangular spirals.

Let us sum up:

• Simple geometrical problems in finding the curves for tangent at a point.

• Finding the curves for projection of the normal on the x-axis.

• Finding the curves for the tangent making a constant angle.

Check your progress:

1. Find the curves of the tangent at a point is always perpendicular to the line joining

the point to the origin.

2. Find the curves for which tangent makes a constant angle with the radius vector
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1.7 Orthogonal Trajections

Let

f(x, y, a) = 0 (1.7.17)

represent a family of curves, one curve for each value of the parameters a. Differen-

tiating (1.7.17), we get

∂f

∂x
+ ∂f

∂y

dy

dx
= 0 (1.7.18)

Eliminating a between (1.7.17) and (1.7.18), we get a differential equation of the first

order

ϕ

(
x, y,

dy

dx

)
= 0 (1.7.19)

of which (1.7.17) is the general solution. Now we want a family of curves cutting every

member of (1.7.17) at right angle at all points of intersection.

Figure 1.10

At a point of intersection of the two curves, x, y are the same but the slope of the

second curve is negative reciprocal of the slope of the first curve.

As such differential equation of the family of orthogonal trajectories is

ϕ

(
x, y,− 1

dy/dx

)
= 0 (1.7.20)

Integrating (1.7.20), we get
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g(x, y, b) = 0

which gives the orthogonal trajectories of the family (1.7.17).

(i) Let the original family be y = mx, when m is a parameter then

dy/dx = m

and eliminating m, we get the differential equation of this concurrent family of straight

lines as

y

x
= dy

dx

To get the orthogonal trajectories, we replace dy/dx by −1/(dy/dx) to get

y

x
= − 1

dy/dx

Integrating

∫
ydy = −

∫
xdx

y2 = −x2 + a2

x2 + y2 = a2

x2 + y2 = a2 (1.7.21)

which gives the orthogonal trajectories as concentric circles (Figure 1.3.9a).

(ii) Find the orthogonal trajectories of the family of confocal conics.

x2

a2 + λ
+ y2

b2 + λ
= 1 (1.7.22)

where λ is a parameter. Differentiating, we get

x

a2 + λ
+ y

b2 + λ

dy

dx
= 0 (1.7.23)

Eliminating λ between (1.7.22) and (1.7.23), we get
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(xp− y)(x+ py) = p
(
a2 − b2

)
; p = dy

dx
(1.7.24)

To get the orthogonal trajectories, we replace p by −1
p

to get

(
−x
p
− y

)(
x− y

p

)
= −1

p

(
a2 − b2

)
(1.7.25)

or

(xp− y)(x+ py) = p
(
a2 − b2

)
(1.7.26)

However (1.7.24) and (1.7.26) are identical. As such the family of confocal conics is

self-orthogonal, i.e. for every conic of the family, there is another with same focii which

cuts it at right angles.

Figure 1.11

One family consists of confocal ellipses and the other consists of confocal hyperbolas

with the same focii (Figure 1.11).

(iii) In polar coordinates after getting the differential equation of the family of curves,

we have to replace r dθ
dr

by−1/
(
r dθ
dr

)
and then integrate the resulting differential equation.

Then if the original family is

r = 2a cos θ, (1.7.27)

with a > 0 as a parameter, its differential equation is obtained by eliminating a between

(1.7.27) and

dr

dθ
= −2a sin θ
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to get

r
dθ

dr
= − cot θ

Replacing r dθ
dr

by −
(
r dθ
dr

)−1
, we get

r
dθ

dr
= tan θ

Integrating we get

r = 2b sin θ

The orthogonal trajectories are shown in Figure 1.12.

Figure 1.12

The circles of both families pass through the origin, but while the centre of one family

lie on x-axis, the centres of the orthogonal family lie on y-axis.

Let us sum up:

• The orthogonal trajectories with the family of curves consisting confocal ellipses .

• Other family consists of confocal hyberbolas with the same focii.

• The circles of the families passes through the origin.
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Check your progress:

1. Find the orthogonal trajectories of the differential equation ϕ(x, y,− 1
dy/dx

) = 0.

2. Find the orthogonal trajectories of the family of confocal conics.

Summary:

In this unit, we have modelled and analyzed the population growth and decay models

that change over time. In addition, to studied the spread of technological innovations

and infectious diseases. Further, we discussed the basics of the law of mass action: chem-

ical reactions. Finally, we have analyzed the dynamical problems like simple harmonic

motion, motion under gravity in a resisting medium, motion of a rocket and orthogonal

trajectory.

Glossary:

Population growth model, Immigration, Emigration, Radio-active decay, Logistic law,

Compartmental model, Orthogonal trajectory.

Self Assessment questions

1. What are changes explained in the population size that depends on birth and death

rate?

2. Explain decay models.

3. Explain model used in medicine is that the rate of growth of a tumor is proportional

to the size of the tumor.Find the General solution.

4. Find the volume of Blood in the human body?

5. Explain the orthogonal trajectories when the circles of families passes through the

origin.
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Exercises

1. Suppose the population of the world now is 4 billion and its doubling period is 35

years, what will be the population of the world after 350 years, 700 years, 1050

years? If the surface area of the earth is 1,860,000 billion square feet, how much

space would each person get after 1050 years?

2. Find the relation between doubling, tripling and quadrupling times for a popula-

tion.

3. Substances X and Y combine in the ratio 2 : 3 to form Z. When 45 grams of X

and 60 grams of Y are mixed together, 50 gms of Z are formed in 5 minutes. How

many grams of Z will be found in 210 minutes? How much time will it like to get

70 gms of Z?

4. Show that he logistic model can be written as 1
N
dN
dt

= rK−N
N

. Deduce that K is

the limiting size of the population and the average rate of growth is proportional

to the fraction by which the population is unsaturated.

5. Let

G(t)

be the amount of glucose present in the blood-stream of a patient at time t.

Assuming that the glucose is injected into the blood stream at a constant rate

of C grams per minute, and at the same time is converted and removed from the

blood stream at a rate proportional to the amount of glucose present, find the

amount G(t) at any time t. If G(0) = G0, what is the equilibrium level of glucose

in the blood stream?

6. Discuss the motion of a rocket when gravity is taken into account.

7. Find a family of curves such that for each curve, the length of the tangent inter-

cepted between the axes is of constant length. Draw the curves
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Answers for check your progress

Section 1.2

1. The population size remains constant.

2. The planting of new plants will correspond to immigration and cutting of trees

will correspond to emigration.

Section 1.3

1. Refer section 1.3.1

2. If A and B are the initial amounts of two substances, we get

dz

dt
= k(A− az

a+ b
)(B − bz

a+ b
).

This a non linear differential equation for a second order reaction.

Section 1.4

1. 0.5 microcuries

2. Refer section 1.4.1

Section 1.5

1. As the fuel burns, the mass of the rocket decreases.

2. A particle starts from A with zero velocity and moves towards 0 with increasibg

velocity and reaches 0 at time π/2√µ with velocity√µa. It continue to move in the

same direction, but now with decreasing velocity till it reaches where its velocity

is again zero. If it begins moving towards 0 with increasing velocity and reaches 0

with velocity √µa and comes to reat ar A after a total time period 2π/√µ. The

periodic motion then repeats itself.
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Section 1.6

1. It is a family of concentric circle.

2. It is a family if equiangular spirals.

Section 1.7

1. The orthogonal trajectories as concentric circles .

2. One family consists of confocal ellipses and the other consists of confocal hyper-

bolas with the same focii.
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Unit 2

Mathematical Modelling Through Sys-

tems of First-Order Ordinary Differ-

ential Equations

Objectives:

• To model and analyze population dynamics models.

• Understand the spread of diseases through epidemic models and infectious disease

models.

• To discuss the compartment model, economics, medicine and arms race.

• To solve simple problems in first-order ordinary differential equations.

2.1 Mathematical Modelling in Population Dynam-

ics

2.1.1 Prey-Predator Model

Let x(t), y(t) be the populations of the prey and predator species at time t. We assume

that
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(i) if there are no predators, the prey species will grow at a rate proportional to the

population of the prey species,

(ii) if there are no prey, the predator species will decline at a rate proportional to

the population of the predator species,

(iii) the presence of both predators and preys is beneficial to growth of predator

species and is harmful to growth of prey species. More specifically the predator species

increases and the prey species decreases at rates proportional to the product of the two

populations.

These assumptions give the systems of non-linear first order ordinary differential

equations

dx

dt
= ax− bxy = x(a− by), a, b > 0 (2.1.1)

dy

dt
= −py + qxy = −y(p− qx), p, q > 0 (2.1.2)

Now dx/dt, dy/dt both vanish if

x = xe = p

q
, y = ye = a

b
.

If the initial populations of prey and predator species are p/q and a/b respectively, the

populations will not change with time. These are the equilibrium sizes of the populations

of the two species.

Of course x = 0, y = 0 also gives another equilibrium position.

From (2.1.1) and (2.1.2),

dy

dx
= −y(p− qx)

x(a− by)

or

a− by
y

dy = −p− qx
x

dx; x0 = x(0), y0 = y(0)

ady

y
− bydy = −pdx

x
+ qxdx

Integrating
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∫ ady

y
−
∫
bdy =

∫ −pdx
x

+
∫
qdx

a ln y(t)− by(t) = −p ln x(t) + qx(t) + A

a ln y(0)− by(0) = −p ln x(0) + qx(0) + A (since x0 = x(0), y0 = y(0))

∴ A = a ln y(0)− by(0) + p ln x(0)− qx(0)

Substituting A values, we get

a ln y(t)− by(t) = −p ln x(t) + qx(t) + a ln y(0)− by(0) + p ln x(0)− qx(0)

a ln y(t)− a ln y(0) + p ln x(t)− p ln x(0) = by(t)− by(0) + qx(t)− qx(0)

a ln y

y0
+ p ln x

x0
= b (y − y0) + q (x− x0)

Thus through every point of the first quadrant of the x− y plane, there is a unique

trajectory. No two trajectories can intersect, since intersection will imply two different

slopes at the same point.

If we start with (0, 0) or (p/q, a/b), we get point trajectories.

If we start with x = x0, y = y0, from (2.28) and (2.29), we find that x increases while

y remains zero.

Similarly if we start with x = 0, y = y0, we find that x remains zero while y decreases.

Thus positive axes of x and y give two line trajectories (Figure 2.1).

Figure 2.1: Prey-Predator Model

Since no two trajectories intersect, no trajectory starting from a point situated within
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the first quadrant will intersect the x-axis and y-axis trajectories.

Thus all trajectories corresponding to positive initial populations will lie strictly

within the first quadrant. Thus if the initial populations are positive, the populations

will be always positive. If the population of one (or both) species is initially zero, it will

always remain zero.

The lines through (p/q, a/b) parallel to the axes of coordinates divide the first quad-

rant into four parts I, II, III and IV. Using (2.1.1), (2.1.2), we find that

in I , dx/dt < 0, dy/dt > 0, dy/dx < 0

in II, dx/dt < 0, dy/dt < 0, dy/dx > 0

in III, dx/dt > 0, dy/dt < 0, dy/dx < 0

in IV, dx/dt > 0, dy/dt > 0, dy/dx > 0

This give the direction field at all points as shown in Figure 13. Each trajectory is a

closed convex curve. These trajectories appear relatively cramped near the axes.

In I and II, prey species decreases and in III and IV, it increases. Similarly in IV

and I, predator species increases and in II and III, it decreases.

After a certain period, both species return to their original sizes and thus both species

sizes vary periodically with time.

2.1.2 Competition Models

Let x(t) and y(t) be the populations of two species competing for the same resources,

then each species grows in the absence of the other species, and the rate of growth of

each species decreases due to the presence of the other species.

This gives the system of differential equations

dx

dt
= ax− bxy = bx

(
a

b
− y

)
; a > 0, b > 0 (2.1.3)

dy

dt
= py − qxy = y(p− qx) = qy

(
p

q
− x

)
; p > 0, q > 0 (2.1.4)

There are two equilibrium positions viz. (0, 0) and (p/q, a/b). There are two point

trajectories viz. (0, 0) and (p/q, a/b) and there are two line trajectories viz. x = 0 and

y = 0.
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In I dx/dt < 0, dy/dt < 0, dy/dx > 0

In II dx/dt < 0, dy/dt > 0, dy/dx < 0

In III dx/dt > 0, dy/dt > 0, dy/dx > 0

In IV dx/dt > 0, dy/dt < 0, dy/dx < 0

This gives the direction field as shown in Figure 2.2. From (2.1.3) and (2.1.4)

dy

dx
= y(p− qx)
x(a− by) or a− by

y
dy = p− qx

x
dx

a− by
y

dy = p− qx
x

dx; x0 = x(0), y0 = y(0)

ady

y
+ pdx

x
= bydy − qxdx

Integrating

∫ ady

y
−
∫ pdx

x
=
∫
bdy −

∫
qdx

a ln y(t)− p ln x(t) = by(t)− qx(t) + A

a ln y(0)− p ln x(0) = by(0)− qx(0) + A (since x0 = x(0), y0 = y(0))

∴ A = a ln y(0)− p ln x(0)− by(0) + qx(0)

Substituting A values, we get

a ln y(t)− p ln x(t) = by(t)− qx(t) + a ln y(0)− p ln x(0)− by(0) + qx(0)

a ln y(t)− a ln y(0)− p ln x(t) + p ln x(0) = by(t)− by(0)− qx(t) + qx(0)

a ln y

y0
− b (y − y0) = p ln x

x0
− q (x− x0)

The trajectory which passes through (p/q, a/b) is

a ln by
a
− by + a = p ln qx

p
− qx+ p

If the initial populations correspond to the point A, ultimately the first species dies

but and the second species increases in size to infinity.
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Figure 2.2: Competition Model

If the initial populations correspond to the point B, then ultimately the second

species dies out and the first species tends to infinity.

Similarly if the initial populations correspond to point C, the first species dies out

and the second species goes to infinity and if the initial populations correspond to point

D, the second species dies out and the first species goes to infinity.

If the initial populations correspond to point E or F , the species populations converge

to equilibrium populations p/q, a/b and if the initial population correspond to point

G,H, the first and second species die out respectively.

Thus except when the initial populations correspond to points on curves O′E and

O′F , only one species will survive in the competition process and the species can coexist

only when the initial population sizes correspond to points on the curve EF .

It is also interesting to note that while the initial populations corresponding to

A,E,B are quite close to one another, the ultimate behaviour of these populations

are drastically different.

For populations starting at A, the second species alone survives, for populations

starting at B, the first species alone survives, while for population starting at E, both

species can coexist.

Thus a slight change in the initial population sizes can have a catastrophic effect on

the ultimate behaviour.

Remark 2.1.1. It may also be noted that for both prey-predator and competition models,

we have obtained a great deal of insight into the models without using the solution of these

equations (2.1.1), (2.1.2) or (2.1.3), (2.1.4). By using numerical methods of integration
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with the help of computers, we can draw some typical trajectories in both cases and can

get additional insight into the behaviour of these models.

2.1.3 Multi-species Models

We can consider the model represented by the system of differential equations

dx1

dt
= a1x1 + b11x

2
1 + b12x1x2 + . . .+ b1nx1xn

dx2

dt
= a2x2 + b21x2x1 + b22x

2
2 + . . .+ b2nx2xn (2.1.5)

dxn
dt

= anxn + bn1xnx1 + bn2xnx2 + . . .+ bnnx
2
n

Here x1(t), x2(t), . . . , xn(t) represent the populations of the n species.

Also ai is positive or negative according as the i th species grows or decays in the

absence of other species and bij is positive or negative according as the i th species

benefits or is harmed by the presence of the j th species.

In general bii is negative since members of the i th species also compete among

themselves for limited resources.

We can find the positions of equilibrium by putting

dxi
dt

= 0 for i = 1, 2, . . . , n

and solving the n algebraic equations for x1, x2, . . . , xn.

We can also obtain all degenerate solutions in which one or more xi ’s are zero, i.e. in

which one or more species have disappeared and finally we have the equilibrium position

in which all species can disappear.

If x10, x20, . . . , xn0 is an equilibrium position, we can discuss its local stability by

substituting

x1 = x10 + u1, x2 = x20 + u2, . . . , xn = xn0 + un

in (2.1.5) and getting a system of linear differential equations
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du1

dt
= c11u1 + c12u2 + . . .+ c1nun

du2

dt
= c21u1 + c22u2 + . . .+ c2nun

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dun
dt

= cn1u1 + cn2u2 + . . . . . .+ cnnun

by neglecting squares, products and higher powers of ui ’s.

We can try the solutions u1 = A1e
λt , u2 = A2e

λt , . . . , un = Ane
λt to get

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c11 − λ c12 c13 . . . c1n

c21 c22 − λ c23 . . . c2n

. . . . . . . . . . . . . . .

cn1 cn2 cn3 . . . cnn − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Thus the equilibrium position would be stable if the real parts of all the eigenvalues

of the matrix [cij] are negative.

The conditions for this are given by Routh-Hurwitz criterion which states that all

the roots of

a0x
n + a1x

n−1 + . . .+ an = 0, a0 > 0 (2.1.6)

will have negative real parts if and only if T0, T1, T2, . . . are positive where

T0 = a0, T1 = a1, T2 =

∣∣∣∣∣∣∣
a1 a0

a3 a2

∣∣∣∣∣∣∣ , T3 =

∣∣∣∣∣∣∣∣∣∣∣
a1 a0 0

a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣∣∣∣∣∣

T4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 0

a3 a2 a1 0

a5 a4 a3 a2

a7 a6 a5 a4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
This is true if and only if ai and either all even-numbered Tk or all oddnumbered Tk

are positive.

Alternatively (2.1.6) will have all roots with negative real parts iff this is true for the

(n− 1) th degree equation
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a1x
n−1 + a2x

n−2 + a3x
n−3 + . . .− a0

a1
a3x

n−2 − a0

a1
a5x

n−4 − . . . = 0

The above method will enable us to discuss only local stability of a position of

equilibrium, i.e. this will decide that if the populations of different species are changed

slightly from these equilibrium values, whether the population sizes will return to their

original equilibrium values or not.

The problem of discussing the global stability i.e. of discussing whether the popu-

lations will return to these equilibrium values, whatever be the magnitudes of the dis-

turbances, is a more difficult problem and it is possible to solve this problem in special

cases only.

2.1.4 Age-Structured Population Models

Let x1(t), x2(t), . . . , xp(t) be the populations of the p pre-reproductive age groups.

Let xp+1(t), . . ., xp+q(t) be the populations of q reproductive agegroups and let

xp+q+1(t), . . . , xp+q+r(t) be the populations of the r post reproductive age-groups.

Let bp+1, bp+2, . . . , bp+q be the birth rates in the q reproductive age-groups, let di be

the death rates in the i th age-group (i = 1, 2, . . . , p + q + r) and let mj be the rate of

migration from the j th age-group to the (j+1) th age-group (j = 1, 2, . . . , p+q+r−1),

then we get the system of differential equations

dx1

dt
= bp+1xp+1 + . . .+ bp+qxp+q − (d1 +m1)x1

dx2

dt
= m1x1 − (d2 +m2)x2

. . . . . . . . . . . . . . . . . . . . . . . . . . .

dxn
dt

= mn−1xn−1 − dnxn; n = p+ q + r, or

d

dt



x1(t)

x2(t)
...

xn(t)


=



− (d1 +m1) 0 . . . bp+1 . . . bp+q . . . 0 0

m1 − (d2 +m2) . . . 0 . . . 0 . . . 0 0

0 m2 . . . 0 . . . 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . 0 . . . mn−1 −dn





x1(t)

x2(t)
...

xn(t)


(2.1.7)
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or
dX

dt
= AX(t),

where A is a matrix, all of whose diagonal elements are negative, all of whose main

subdiagonal elements are positive, q other elements of the first row are positive and all

other elements are zero.

Equation (2.1.7) has the solution

X(t) = exp(At)X(0)

Let us sum up:

• Prey-predator model.

• Competition models.

• Competition models.

• Age-structured population models.

Check your progress:

1. What is the basic dynamics of Prey predator model?

2. What is the result of when no two trajectories can intersect?

3. What are the equilibrium points of the differential equations of the compartmental

models?

4. What is the result of the Multispecies model ?
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2.2 Mathematical Modelling of Epidemics

2.2.1 A Simple Epidemic Model

Let S(t) and I(t) be the number of susceptibles (i.e. those who can get a disease) and

infected persons (i.e. those who have already got the disease).

Initially let there be n susceptible and one infected person in the system so that

S(t) + I(t) = n+ 1, S(0) = n, I(0) = 1

The number of infected persons grows at a rate proportional to the product of sus-

ceptible and infected persons and the number of susceptible persons decreases at the

same rate so that we get the system of differential equations

dS

dt
= −βSI,

dI

dt
= βSI (2.2.8)

so that

dS

dt
+ dI

dt
= 0,

S(t) + I(t) = constant = n+ 1 (2.2.9)

By using (2.2.9) in (2.2.8), we get

dS

dt
= −βS(t)(n+ 1− S(t))

dI

dt
= βI(t)(n+ 1− I(t))

=⇒ dS

dt
= −βS(n+ 1− S)

dI

dt
= βI(n+ 1− I)

Integrating dS
dt

= −βS(n+ 1− S), we get

∫ dS

dt
=

∫
βS(t)(S(t)− (n+ 1))

55



∫ dS

S(S − (n+ 1)) = −
∫
βdt∫ 1

n+ 1

[
− 1
S

+ 1
(S − (n+ 1))

]
dS =

∫
βdt[

−
∫ dS

S
+
∫ dS

(n+ 1− S)

]
= (n+ 1)

∫
βdt[

− logS + log(S − (n+ 1))
]

= (n+ 1)βt+ logC[
− logS + log(S − (n+ 1))− logC

]
= (n+ 1)βt

log
[
S − (n+ 1)

CS

]
= (n+ 1)βt

S − (n+ 1)
CS

= e(n+1)βt

S − (n+ 1)
S

= Ce(n+1)βt (2.2.10)

By using the initial condition S(0) = n, we get

S(0)− (n+ 1)
S(0) = Ce0

n− n− 1
n

= C

C = − 1
n

Then equation (2.2.10) becomes

S − (n+ 1)
S

= − 1
n
e(n+1)βt

n(S − (n+ 1)) = −Se(n+1)βt

nS − n(n+ 1) = −Se(n+1)βt

nS + Se(n+1)βt = n(n+ 1)

S(n+ e(n+1)βt) = n(n+ 1)

S(t) = n(n+ 1)
n+ e(n+1)βt (2.2.11)

Similarly, I(t) = (n+ 1)e(n+1)βt

n+ e(n+1)βt (2.2.12)

From (2.2.11) and (2.2.12), we have

S(t) = n(n+ 1)
n+ e(n+1)βt , I(t) = (n+ 1)e(n+1)βt

n+ e(n+1)βt ,
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so that

Ltt→∞ S(t) = 0, Ltt→∞ I(t) = n+ 1 (2.2.13)

2.2.2 A Susceptible-Infected-Susceptible (SIS) Model

Here, a susceptible person can become infected at a rate proportional to SI and an

infected person can recover and become susceptible again at a rate γI, so that

dS

dt
= −βSI + γI,

dI

dt
= βSI − γI, (2.2.14)

which gives

dI

dt
= (β(n+ 1)− γ)I − βI2 (2.2.15)

2.2.3 SIS Model with Constant Number of Carriers

Here infection is spread both by infectives and a constant number C of carriers, so that

(2.2.15) becomes

dI

dt
= β(I + C)S − γI − βI2

= βC(n+ 1) + β(n+ 1− γ/β)I − βI2.

2.2.4 Simple Epidence Model with Carriers

In this model, only carriers spread the disease and their number decreases exponentially

with time as these are identified and eliminated, so that we get

dS

dt
= −βS(t)C(t) + γI(t), (2.2.16)

dI

dt
= βC(t)S(t)− γI(t), (2.2.17)

dC

dt
= −αC (2.2.18)

so that

S(t) + I(t) = S0 + I0 = N( say ). (2.2.19)
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Integrating (2.2.18), we get

dC

C
= −α

∫
dt

logC = −αt+ logA

log C
A

= −αt
C

A
= e−αt

C = Ae−αt

C(t) = C0 exp(−αt) (By taking C(0) = C0 and solving) (2.2.20)

and by using (2.2.19), (2.2.20) in (2.2.17), we get

dI

dt
= βC0N exp(−αt)− [βC0 exp(−αt) + γ] I

2.2.5 Model with Removal

Here infected persons are removed by death or hospitalisation at a rate proportional to

the number of infectives, so that the model is

dS

dt
= −βSI, dI

dt
= βSI − γI = βI

(
S − γ

β

)

= βI(S − ρ); ρ = γ

β

with initial conditions

S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0 = 0

S0 + I0 = N

2.2.6 Model with Removal and Immigration

We modify the above model to allow for the increase of susceptibles at a constant rate

µ so that the model is

dS

dt
= −βSI + µ,

dI

dt
= βSI − γI, dR

dt
= γI
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Let us sum up:

• A simple epidemic model.

• A susceptible-infected-susceptible (SIS) model.

• Simple epidemic model with carriers.

• Model with removal and immigration.

Check your progress:

1. What are the types of epidemic models?

2. What is the difference between the Simple Epidence Model with Carriers and

Model with removal?

2.3 Compartment Models

Pharmokinetics (also called drug kinetics or tracer kinetics or multi-compartment anal-

ysis) deals with the distribution of drugs, chemicals, tracers or radio-active substances

among various compartments of the body where compartments are real or fictitious

spaces for drugs.

Let xi(t) be the amount of the drug in the i th compartment at time t.

We shall assume that the amount that can be transferred from the i th to the j th

compartment (j 6= i) in the time interval (t, t + ∆t) is kijxi(t)∆t + 0(∆t) where kij is

called the transfer coefficient from the i th to the j th compartment.

The total change ∆xi in time ∆t is given by the amount entering the i th com-

partment from other compartments which is reduced by the amount leaving the i th

compartment for other compartments including the zeroeth compartment that denotes

the outside system.

Thus we get

∆xi = −
n∑
j=0
j 6=i

kijxi∆t+
n∑
j=1
j 6=i

kjixj∆t+ 0(∆t)
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Dividing by ∆t and proceeding to the limit as ∆t→ 0, we get

dxi
dt

= −xi
n∑
j=1
j 6=i

kij +
n∑
j=1
j 6=l

kjixj

=
n∑
j=1

kjixj, (i = 1, 2, . . . , n,

where we define

kii = −
n∑
j=1
j 6=i

kij, (i = 1, 2, . . . , n)

In matrix notation, we have

dX

dt
= KX (2.3.21)

where

X(t) =



x1(t)

x2(t)
...

xn(t)


, K =



k11 k21 . . . kn1

k12 k22 . . . kn2

. . . . . . . . . . . .

k1n k2n . . . knn


(2.3.22)

If X = Beλt, when B is a column matrix, (2.3.21) gives

λBeλt = KBeλt

This gives a consistant system of equations to determine B if

|K − λI| = 0

where I is n× n unit matrix. Thus λ has to be an eigenvalue of the matrix K.

We note that all the diagonal elements of K are negative, all the non-diagonal ele-

ments are non-negative and the sum of element of every column is greater than or equal

to zero.

For such a matrix, it can be shown that the real parts of the eigenvalues are always

less than or equal to zero, and the imaginary part is non-zero only when the real part is
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strictly less than zero.

Thus if λ1, λ2, . . . , λn are the eigenvalues then

Re (λi) 6 0

Im (λi) 6= 0 only if Rl (λi) < 0

If the drug is injected at a constant rate given by the column vector D with compo-

nents D1, D2, . . . , Dn, (2.3.21) becomes

dX/dt = KX +D (2.3.23)

Equations (2.3.21) and (2.3.23) constitute the basic equations for the analysis of drug

distribution in the n-compartment system.

Let us sum up:

• Compartment models utilising ODE systems.

Check your progress:

1. Define Pharmokinetics.

2. Explain the Properties of the eigen values of the matrix.

2.4 Mathematical Modelling in Economics

Let S(t), I(t), Y (t) be the Savings, Investment and National Income at time t, then it is

assumed that

(i) Savings are proportional to national income, so that

S(t) = αY (t), α > 0

(ii) Investment is proportional to the rate of increase of national income so that

I(t) = βY ′(t), β > 0
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(iii) All savings are invested, so that

S(t) = I(t)

We get a system of three ordinary differential equations of first order for determining

S(t), Y (t), I(t). Solving we get

S(t) = I(t)

βY ′(t) = αY (t)∫ dY

Y
= α

β

∫
dt

log Y = α

β
t+ logA

log Y
A

= α

β
t

Y

A
= e

α
β
t

Y = Ae
α
β
t

Y (t) = Y0 exp(α
β
t) (By taking Y (0) = Y0 and solving) (2.4.24)

(2.4.25)

and

I(t) = αY (0)eαt/β = S(t)

so that the national income, investment and savings all increase exponentially.

Problem 2.4.1. Formulate the Domar First Debt mathematical model in economics

Solution.

Let D(t), Y (t) denote the total national debt and total national income respectively,

then we assume that (i) Rate at which national debt changes in proportional to national

income so that

D′(t) = αY (t) (2.4.26)

(ii) National income increases at a constant rate, so that

Y ′(t) = β (2.4.27)
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Differentiating and simplifying we get

D′′(t) = αY ′(t)

D′′(t) = αβ

Integrating, D′(t) = αβt+ A (2.4.28)

Again integrating, D(t) = αβ
t2

2 + At+B (2.4.29)

Since D′(0) = αY (0), (2.4.28) becomes A = αY (0)

Also when t=0, (2.4.29) becomes D(0) = B

Again integrating (2.4.27), we get

Y (t) = βt+ A

Y (0) = βt+ Y (0)

So that

D(t) = D(0) + αY (0)t+ 1
2αβt

2

Y (t) = Y (0) + βt

D(t)
Y (t) =

D(0) + αY (0)t+ 1
2αβt

2

Y (0) + βt

In this model, the ratio of national debt to national income tends to increase without

limit.

Problem 2.4.2. Formulate the Domar’s Second Debt mathematical model in economics

Solution.

In this model, the first assumption remains the same, but the second assumption is

replaced by the assumption that the rate of increase of national income is proportional

to the national income so that

Y ′(t) = βY (t) (2.4.30)

Solving (2.4.26) and (2.4.30)

Y ′(t) = βY (t)
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∫ dY

Y
= β

∫
dt

log Y = βt+ logA

log Y
A

= βt

Y

A
= eβt

Y = Aeβt

Y (0) = A (By taking t = 0 and solving) (2.4.31)

Y (t) = Y (0)eβt

Then, D′(t) = αY (0)eβt

Integrating, D(t) = α

β
Y (0)eβt + A

D(0)− α

β
Y (0) = A (put t=0)

Hence, D(t) = α

β
Y (0)eβt +D(0)− α

β
Y (0)

D(t) = D(0) + α

β
Y (0)

(
eβt − 1

)
D(t)
Y (t) = D(0)

Y (0)eβt + α

β

(
1− e−βt

)
In this case D(t)/Y (t) → α/β as t → ∞. Thus when debt increases at a rate

proportional to income, then if the ratio of debt to income is not to increase indefinitely,

income must increase exponentially.

Problem 2.4.3. Derive the Allen’s speculative mathematical model in economics

Solution.

Let d(t), s(t), p(t) denote the demand, supply and price of a commodity, then this

model is given by

d(t) = α0 + α1β(t) + α2p
′(t), α0 > 0, α1 < 0, α2 > 0 (2.4.32)

s(t) = β0 + β1p(t) + β2p
′(t), β0 > 0, β1 > 0, β2 < 0 (2.4.33)

If α2 = 0, β2 = 0 this gives Evan’s price-adjustment model in which α1 < 0 since

when price increasing, demand decreases and β1 > 0 since when price increases, supply

increases.
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In Allen’s model, coefficients α2, β2 account for the effect of speculation.

If the price is increasing, demand increases in the expectation of the further increase

in prices and supply decreases for the same reason.

For dynamic equilibrium

d(t) = s(t) (2.4.34)

so that (2.4.32), (2.4.33) and (2.4.34) give

(β2 − α2) dp
dt

+ (β1 − α1) p(t) = α0 − β0

dp

dt
+ (β1 − α1)

(β2 − α2)p(t) = α0 − β0

(β2 − α2)
dp

dt
− λp(t) = pc (2.4.35)

where

pc = α0 − β0

(β2 − α2) , λ = α1 − β1

β2 − α2

Solving

p(t)e−
∫
λdt =

∫
pce
−
∫
λdtdt+ C

p(t)e−λt = −pc
e−λt

λ
+ C

p(t) = α0 − β0

β1 − α1) + Ceλt

p(t) = pe + Ceλt (where, pe = α0 − β0

(β1 − α1)) (2.4.36)

p(0) = pe + Ceλt

p(0)− pe = C (put t=0) (2.4.37)

Hence (2.4.36) becomes

p(t) = pe + (p(0)− pe) eλt

where

pc = α0 − β0

(β2 − α2) , pe = α0 − β0

β1 − α1
, λ = α1 − β1

β2 − α2

The behaviour of p(t) depends on whether p(∞) or pe is large and whether λ < 0 or
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λ > 0. The speculative model is highly unstable.

Problem 2.4.4. Derive the Samuelson’s investment mathematical model in economics.

Solution.

Let K(t) represent the capital and I(t) the investment at time t, then we assume

that

(i) the investment gives the rate of increase of capital so that

dK

dt
= I(t)

(ii) the deficiency of capital below a certain equilibrium level leads to an acceleration of

the rate of investment proportional to this deficiency and a surplus of capital above this

equilibrium level leads to a declaration of the rate of investment, again proportional to

the surplus, so that
dI

dt
= −m (K(t)−Ke)

where Ke is the capital equilibrium level. If k(t) = K(t)−Ke, we get

dk

dt
= I(t), dI

dt
= −mk(t) (2.4.38)

so that

−mk(t) = dI

dt
= dI

dt

dk

dt
= I

dI

dk

Integrating

∫
IdI = −m

∫
kdk

I2

2 = −mk2

2 + A2

2
I2 = −mk2 + A2

I(0)2 = −mk(0)2 + A2 (k0 = k(0); I(0) = 0)

mk2
0 = A2

Then

I2 = m
(
k2

0 − k2
)

; k0 = k(0); I(0) = 0
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so that
dk

dt
= −
√
m
√
k2

0 − k2

and
k(t) = k(0) cos

√
mt

I(t) = −k(0)
√
m sin

√
mt

so that both k(t) and I(t) oscillate with a time period 2π/√m.

It will be noted that if we put k(t) = x(t), I(t) = v(t), equation (2.4.38) are the

equations for simple harmonic motion.

Thus the mathematical models for the oscillation of a particle in a simple harmonic

motion and for the oscillation of capital about its equilibrium value are the same.

In this case, the rate of investment is slowed not only by excess capital as before, but

it is also slowed by a high investment level so that (2.4.38) become

dk

dt
= I(t), dI

dt
= −mk(t)− nI(t)

so that

or

I
dI

dk
+mk(t) + nI(t) = 0

d2k

dt2
+ n

dk

dt
+mk = 0

which are the equations for damped harmonic motion corresponding to the case when

a particle performing SHM is acted as by a resistance force proportional to the velocity.

Let pr(t), sr(t) and dr(t) be the price, supply and demand of a commodity in the r

th market, so that Evan’s price adjustment model mechanism suggests

dpr
dt

= −µr (sr − dr) , r = 1, 2, . . . , n (2.4.39)

Now we assume that the supply and demand of the commodity in the r th market

depends upon its price in all the markets, so that

sr − dr = cr +
n∑
s=r

drsps (2.4.40)
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where cr ’s and drs ’s are constants. From (2.4.39) and (2.4.40), we get

dpr
dt

= −µr
(
cr +

n∑
s=1

drsps

)
, r = 1, 2, . . . , n

If p1e, p2e, . . . pne are the equilibrium prices in the n markets and

Pre = pr − pre,

we get
dPr
dt

= −µr
n∑
s=1

drsPs =
n∑
s=1

ersPs, r = 1, 2, . . . , n

where

ers = −µrdrs

Substituting Pr = Are
λt and eliminating A1, A2, . . . , An, we get

|λI − E| = 0, E = [ers]

Thus the equilibrium will be stable if all the eigen-value of the matrix E have negative

real parts.

If drs = 0 when r 6= s, the markets are independent so that non-zero value of some

or all of these drs′s introduce dependence among markets.

Problem 2.4.5. Explain Leontief’s Open and Closed Dynamical Systems for Inter-

industry Relation

Solution.

We consider n industries. Let

xrs = contribution from the r th industry to the s th industry per unit time

xr = contribution from the r th industry to consumers per unit time

Xr = total output of the r th industry per unit time

ξr = input of labour in the r th industry

pr = price per unit of the product of the r th industry

w = wage per unit of labour per unit time

Y = total labour input into the system
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Srs = stock of the product of the r th industry held by the s th industry

Sr = stock of the r th industry.

Thus we get the following equations:

(i) From the principle of continuity, the rate of change of stock of the r th industry

= excess of the total output of the r th industry per unit time over the contribution of

the r th industry to consumers and other industries per unit time, so that

d

dt
Sr = Xr − xr −

n∑
s=1

xrs

and since

Sr =
n∑
s=1

Srs

d

dt

n∑
s=1

Srs = Xr − xr −
n∑
s=1

xrs, (r = 1, 2, . . . , n)

(ii) Since the total labour input into the system = sum of labour inputs into all industries,

we get

Y =
n∑
r=1

ξr

(iii) Assuming the condition of perfect competition and no profit in each industry, we

should have for each industry the value of input equal to the value of output so that

prXr =
n∑
s=1

psxsr + wξr (r = 1, 2, . . . , n)

(iv) We further assume that the input coefficients

ars = xrs
Xs

, brs = Srs
Xs

, br = ξr
Xr

(r, s = 1, 2, . . . , n)

are constants. We then get the equations

d

dt

n∑
s=1

brsXs = Xr − xr −
n∑
s=1

arsXs, (r = 1, 2, . . . , n) (2.4.41)

Y =
n∑
s=1

bsXs (2.4.42)

pr =
n∑
s=1

psasr + wbr, (r = 1, 2, . . . , n) (2.4.43)
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We assume that the constants ars, brsbs, are known.

We also assume that x1, x2, . . . , xn and w are given to us as function of time, then

equations (2.4.41) determine X1, X2, . . . , Xn and then (2.4.42) determines Y and finally

(2.4.43) determine p1, p2, . . . , pn.

Thus if the final consumer’s demands from all industries are known as functions of

time, we can find the output which each industry must give and the total labour force

required at any time.

Knowing the wage rate at any time, we can find the prices of products of different

industries.

Let us sum up:

Economical mathematical modelling based on ordinary differential equations of first

order with some problems.

Check your progress:

1. Discuss the types of mathematical models in economics.

2. What is the difference between Domar Macro Model, Domar First Debt Model

and Domar’s Second Debt Model?

2.5 Mathematical Models in the Medicine and Arms

Race Battles

Let x(t), y(t) be the blood sugar and insulin levels in the blood stream at time t.

The rate of change dy/dt of insulin level is proportional to (i) the excess x(t)− x0 of

sugar in blood over its fasting level, since this excess makes the pancreas secrete insulin

into the blood stream (ii) the amount y(t) of insulin since insulin left to itself tends to

decay at a rate proportional to its amount and (iii) the insulin dose d(t) injected per

unit time.

70



This gives
dy

dt
= a1 (x− x0)H (x− x0)− a2y + a3d(t) (2.5.44)

where a1, a2, a3 are positive constants and H(x) is a step function which takes the value

unity when x > 0 and taken the value zero otherwise.

This occurs in (95) because if blood sugar level is less than x0, there is no secretion

of insulin from the pancreas.

Again the rate of change dx/dt of sugar level is proportional to (i) the product xy

since the higher the levels of sugar and insulin, the higher is the metabolism of sugar (ii)

x0− x since if sugar level falls below fasting level, sugar is released from the level stores

to raise the sugar level to normal (iii) x− x0 since if x > x0, there is a natural decay in

sugar level proportional to its excess over fasting level (iv) function of t− t0 where t0 is

the time at which food is taken

dx

dt
= −b1xy + b2 (x0 − x)H (x0 − x)− b3 (x− x0)H (x− x0)

+b4z (t− t0) (2.5.45)

where a suitable form for z (t− t0) can be

z (t− t0) = 0, t < t0

= Qe−α(t−t0), t > t0

Equations (2.5.44) and (2.5.45) give two simultaneous differential equations to de-

termine x(t) and y(t). These equation can be numerically integrated.

Let x(t), y(t) be the expenditures on arms by two countries A and B, then the rate

of change dx/dt of the expenditure by the country A has a term proportional to y, since

the larger the expenditure in arms by B, the larger will be the rate of expenditure on

arms by A.

Similarly it has a term proportional to (−x) since its own arms expenditure has an

inhibiting effect on the rate of expenditure on arms by A.

It may also contain a term independent of the expenditures depending on mutual

suspicions or mutual goodwill.
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With these considerations, Richardson gave the model

dx

dt
= ay −mx+ r,

dy

dt
= bx− ny + s (2.5.46)

Here a, b,m, n are all > 0.r and s will be positive in the case of mutual suspicions

and negative in the case of mutual goodwill.

A position of equilibrium x0, y0, if it exists, will be given by

mx0 − ay0 − r = 0

bx0 − ny0 + s = 0
or

x0

−as− nr
= y0

−br −ms

= 1
−mn+ ab

x0 = as+ nr

mn− ab
, y0 = ms+ br

mn− ab
.

If r, s are positive, a position of equilibrium exists if ab < mn. If X = x − x0, Y =

y − y0, we get
dX

dt
= aY −mX, dY

dt
= bX − nY

X = Aeλt, Y = Beλt will satisfy these equations if

∣∣∣∣∣∣∣
λ+m −a

−b λ+ n

∣∣∣∣∣∣∣ = 0, λ2 + λ(m+ n) +mn− ab = 0 (2.5.47)

Now the following cases arise:

(i) mn − ab > 0, r > 0, s > 0. In this case x0 > 0, y0 > 0 and from (2.5.47)

λ1 < 0, λ2 < 0. As such there is a position of equilibrium and it is stable.

(ii) mn−ab > 0, r < 0, s < 0, there is no position of equilibrium since x0 < 0, y0 < 0.

However since λ1 < 0, λ2 < 0, X(t)→ 0, Y (t)→ 0 as t→∞, so that x(t)→ x0, y(t)→

y0. However x0 and y0 are negative and populations cannot become negative. In any

case to become negative, they have to pass through zero values. As such, as x(t) becomes

zero, (2.5.46) is modified to

dy

dt
= −ny + s

and since s < 0, y(t) decreases till it reaches zero. Similarly if y(t) becomes zero first,

(2.5.46) is modified to
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dx

dt
= −mx+ r

and since r < 0, x(t) decreases till it reaches zero. Thus if mn− ab > 0, r < 0, s < 0,

there will ultimately be complete disarmament.

(iii) ma − ab < 0, r > 0, s > 0. These give x0 < 0, y0 < 0, one of λ1, λ2 is positive

and the other is negative. In this case there will be a runaway arms race.

(iv) ma− ab < 0, r < 0, s < 0. These give x0 > 0, y0 > 0 one of λ1, λ2 is positive and

the other is negative. In this case there will be a runaway arms race or disarmament

depending on the initial expenditure on arms.

Let x(t) and y(t) be the strengths of the two forces engaged in combat and let M

and N be the fighting powers of individuals depending on physical fitness, types of arms

and training, then Lanchester postulated that the reduction in strength of each force is

proportional to the effective fighting strength of the opposite force, so that

dx

dt
= −ayN, dy

dt
= −axM

giving

dx

yN
= dy

xM
or Mx2 −Ny2 = constant

If the proportional reduction of strengths in the two forces are the same

1
x

dx

dt
= 1
y

dy

dt
or Ny

x
= Mx

y
or Mx2 = Ny2

This is the square law. The fighting strength of an army depends on the square of

its numerical strength and directly on the fighting quality of individuals.

Problem 2.5.1. Write International Trade Model.

Solution. Since international trade is beneficial to all parties, we can consider the

model
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dx1

dt
= a12x1x2 + a13x1x3 + . . .+ a1nx1xn

dx2

dt
= a21x2x1 + a23x2x3 + . . .+ a2nx2xn

· · · · · · · · · · · · · ··
dxn
dt

= an1xnx1 + an2xnx2 + . . .+ ann−1xnxn−1

where all aij ’s are positive. An equilibrium position is (0, 0, . . . , 0) and this is stable.

Let us sum up:

• Medicine, arms race battles.

• Blood sugar insulin level

• International trade model.

Check your progress:

1. What are the types of Mathematical models in the medicine , Arm race battles

and international trade in terms of systems of ODEs?

2. What is the rate of change dy/dt of insulin?

2.6 Mathematical Modelling in Dynamics

If a particle moves in two dimensional space, we want to determine x(t), y(t), its co-

ordinates at any time t and u(t), v(t) its velocity components at the same time. Similarly

for the motion of a particle in three dimensions, we have to determine x(t), y(t), z(t), u(t), v(t), w(t).

For motion of a rigid body in three dimensional space, we require twelve quantities at

time t viz. six coordinates and velocities of its centre of gravity and six angles and

angular velocities about the centre of gravity.

Since equation of motion are based on the principle: mass × acceleration in any

direction = force in that direction, we get systems of second order differential equations.

However since acceleration is the rate of change of velocity and velocity is the rate
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of change of displacement, we can decompose one ordinary differential equation of the

second order into two ordinary differential equations of the first order.

We discuss below the motion of a particle in a plane under gravity. More general

dynamical motions will be discussed in the next chapter.

2.6.1 Motion of a Projectile

A particle of mass m is projected from the origin in vacuum with velocity V inclined

at an angle α to the horizontal. Suppose at time t, it is at position x(t), y(t) and its

horizontal and vertical velocity components are u(t), v(t) respectively, then the equations

of motion are:

m
du

dt
= 0 m

dv

dt
= −mg

Figure 2.3

Integrating

∫
du =

∫
0dt,

∫
dv =

∫
gdt

u = A, v = gt+B

V cosα = A, V sinα = B when t=0, u(0)=Vcosα, v(0) = Vsinα

u = V cosα, v = V sinα− gt,
dx

dt
= V cosα, dy

dt
= V · sinα− gt
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Integrating again

x = V cosαt, y = V sinαt− 1
2gt

2 (2.6.48)

Eliminating t between these two equations, we get from (2.6.48) that

t = x

cosα

Then, y = xV sinα
V cosα −

1
2

gx2

V 2 cos2 α

y = x tanα− 1
2

gx2

V 2 cos2 α

which is a parabola, since the terms of the second degree form a perfect square. The

parabola cuts y = 0, when

x = 0 or x = V 2 sin 2α
g

corresponding to position 0 and A in Figure 2.3 so that the range of the particle is

given by

R = V 2 sin 2α
g

Putting y = 0 in (2.6.48) we get

t = 0 or t = 2V sinα
g

This gives the time T of flight. Since the horizontal velocity is constant and equal

to V cosα, the total horizontal distance travelled is

V cosα(2V sinα)/(g) = V 2 sin 2α/g

which gives us the same range.

2.6.2 External Ballistics of Gun Shells

To study the motion of gun shells, the following additional factors have to be taken into

account:
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(i) air resistance which may be proportional to vn, but the power n can be different

for different ranges of v

(ii) wind velocity, humidity and pressure

(iii) rotation of the earth

(iv) the fact that shell is a rigid body and as such both motion of its centre of gravity

and motion about the centre of gravity have to be studied. When the shell comes out

of the gun, it is rotating with a large angular velocity.

It is obvious that the problems will be quite complex, but all these problems have

been solved and powerful computers have been developed to solve these problems because

of their importance to defence.

In the case of intercontinental ballistic missiles, heating and aerodynamic effects have

also to be considered.

Let us sum up:

• Modelling in dynamics.

• Motion of a projectile.

• External ballistics of gun shells.

Check your progress:

1. What is the range of the particles projected from the origin in vacuum with velocity

V inclined at an angle α to the horizontal?

2. What are the additional factors that are used to study External Ballistics of Gun

Shells?

Summary:

In this unit, we have developed a model for analysis of the population dynamics. In

addition, studied the spread of diseases through epidemic models and infectious diseases.
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Further, we discussed the compartment model, economics, medicine and the arms race.

Finally, we solved simple problems in first-order ordinary differential equations.

Glossary:

Prey-predator model, Competition models, Multi species model, Epidemic model.

Self assessment questions

1. What are the equilibrium points of the compartmental models and multispecies

models ?

2. What is the difference between Samuelson’s Investment Modeland Samuelson’s

Modified Investment Model ?

3. Obtain the steady-state solution of Leontief?s model.

4. Show that for the Lanchester model, the trajectories are hyperbolas, all of which

have the same asymptotes.

5. Show that both the range and maximum height of a projectile are reduced by air

resistance.

Exercise

1. Draw some trajectories for the model dx
dt

= x(1− 0.1y) , dy
dt

= −y(1− 0.1x).

2. Discuss the modification of the prey-predator model when

• the predator population is harvested at a constant rate h1 or

• the prey population is harvested at a constant rate h2 or

• both species are harvested at constant rates.

3. Solve SIS model when β is a known function of t .
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4. Let dose D be given at time 0, T, 2T, 3T, · · · , Find X(nT−0), X(nT+1), X(nT+t),

(0 < t < T )

5. Discuss the solution of Allen?s speculative model when (i) λ > 0 (ii) λ < 0

(iii)pe > p(0)(iv)pe < p(0) and interpret the solution in each case

6. For the model dN1
dt

= N1(a1 − b1N1 − b2N2), dN2
dt

= N2(a2 − c1N1 − c2Nn), a1, a2 >

0,b1, b2 > 0,Cl, C2 > 0. find the positions of equilibrium and discuss their stability.

Draw also the direction fields and possible trajectories.

Answers for check your progress

section 2.1

1. (i) If there are no predators, the prey species will grow at a rate proportional to

the population of the prey species,(ii) if there are no prey, the predator species will

decline at a rate proportional to the population of the predator species, (iii) the

presence of both predators and preys is beneficial to growth of predator species

and is harmful to growth of prey species. More specifically the predator species

increases and the prey species decreases at rates proportional to the product of

the two populations.

2. The intersection will imply two different slopes at the same point.

3. Two equilibrium positions are (0, 0) and (p/q, a/b).

4. This method will enable us to discuss only local stability of a position of equilib-

rium, i.e. this will decide that if the populations of different species are changed

slightly from these equilibrium values, whether the population sizes will return

to their original equilibrium values or not. The problem of discussing the global

stability i.e. of discussing whether the populations will return to these equilibrium

values, whatever be the magnitudes of the disturbances, is a more difficult problem

and it is possible to solve this problem in special cases only.
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Section 2.2

1. A simple epidemic model, A Susceptible-Infected-Susceptible (SIS) Model, SIS

Model with Constant Number of Carriers, Simple Epidence Model with Carriers,

Model with Removal, Model with Removal and Immigration.

2. In simple epidence model, only carriers spread the disease and their number de-

creases exponentially with time as these are identified and eliminated and in model

with removal infected persons are removed by death or hospitalisation at a rate

proportional to the number of infectives.

Section 2.3

1. Pharmokinetics (also called drug kinetics or tracer kinetics or multi-compartment

analysis) deals with the distribution of drugs, chemicals,tracers or radio-active

substances among various compartments of the body where compartments are

real or fictitious spaces for drugs.

2. The real parts of the eigenvalues are always less than or equal to zero, and the

imaginary part is non-zero only when the real part is strictly less than zero.

Section 2.4

1. Domar Macro Model, Domar First Debt Model, Domar’s Second Debt Model,

Allen’s Speculative Model, Samuelson’s Investment Model, Samuelson’s Modified

Investment Model, Stability of Market Equilibrium, Leontief’s Open and Closed

Dynamical Systems for Inter-industry Relation.

2. In Domar Macro Model, the national income, investment and savings all increase

exponentially. In Domar’s First Debut Model ,the ratio of national debt to national

income tends to increase without limit. In the Domar’s Second Debut Model, when

debt increases at a rate proportional to income, then if the ratio of debt to income

is not to increase indefinitely, income must increase exponentially.
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Section 2.5

1. A Model for Diabetes Mellitus, Richardson’s Model for Arms Race, Lanchester’s

Combat Model,International Trade Model

2. The rate of change of insulin is proportional to the excess of sugar in blood over

its fasting level, since this excess makes the pancreas secrete insulin into the blood

stream (ii) the amount y(t) of insulin since insulin left to itself tends to decay at

a rate proportional to its amount and (iii) the insulin dose d(t) injected per unit

time.

Section 2.6

1. R = V 2 sin 2α
g

.

2. (i) air resistance which may be proportional to νn, but the power n can be different

for different ranges of ν(ii) wind velocity, humidity and pressure (iii) rotation of

the earth etc.,
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Unit 3

Mathematical Modelling Through Or-

dinary Differential Equations of Sec-

ond Order

Objectives:

• Recall the planetary motions, Circular Motion and Motion of Satellites

• Know to how make model planetary motions through linear differential equations

of second order.

• To solve simple problems in second-order ordinary differential equations.

3.1 Mathematical Modelling of Planetary Motions

3.1.1 Need for the Study of Motion Under Central Forces

Every planet moves mainly under the gravitational attractive force exerted by the Sun.

If S and p are masses of the Sun and the planet and G is the universal constant of

gravitation, then the forces of gravitational attraction on the Sun and planet are both

GSP/r2, where r is the distance between the Sun and the planet.

Accordingly the acceleration (3.1) of the Sun towards the planet is GP/r2 and the

acceleration of the planet towards the Sun is GS/r2.
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The acceleration of the planet relative to the Sun is

G(S + P )/r2 = µ/r2.

Now we take the Sun as fixed, then the planet can be said to move under a central

force µ/r2 per unit mass i.e. under a force which is always directed towards a fixed

centre S.

Figure 3.1

We shall for the present also regard P as a particle so that to study the motion of

the planet, we have to study the motion of a particle moving under a central force.

We can take S as origin so that the central force is always along the radius vector.

To study this motion, it is convenient to use polar coordinates and to find the com-

ponents of the velocity and acceleration along and perpendicular to the radius vector.

3.1.2 Components of Velocity and Acceleration Vectors along Radial and

Transverse Directions

As the particle moves from P to Q, the displacement along the radius vector

= ON −OP = (r + ∆r) cos ∆θ − r

and the radial component u of velocity is

u = Lt
∆t→0

(r + ∆r)cos ∆θ − r
∆t

= Lt∆t→0
∆r
∆t = dr

dt

(Since, ∆θ = 0, cos∆θ = 1)
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Figure 3.2

Similarly the displacement perpendicular to the radius vector

= (r + ∆r) sin ∆θ

and the transverse component v of the velocity is given by

v = Lt∆t→0
(r + ∆r) sin ∆θ

∆t
= Lt∆t→0 r

sin ∆θ
∆θ

∆θ
∆t (when ∆t→ 0, sin ∆θ → 0)

= r
dθ

dt

As such the velocity components in polar coordinates are

u = dr

dt
= r′ and v = r

dθ

dt
= rθ′

Now the change in the velocity along the radius vector

= (u+ ∆u) cos ∆θ − (v + ∆v) sin ∆θ − u

and the radial component of acceleration

= Lt∆t→0
(u+ ∆u) cos ∆θ − (v + ∆v) sin ∆θ − u

∆t
= Lt∆t→0

∆u− v∆θ
∆t (when ∆t→ 0, sin ∆θ → 0 and cos ∆θ = 1)

= du

dt
− vdθ

dt

= d

dt
(r′)− rθ′θ′

= r′′ − rθ′2
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Figure 3.3

Similarly the transverse component of acceleration

= Lt∆t→0
(u+ ∆u) sin ∆θ + (v + ∆v) cos ∆θ − v

∆t
= Lt∆t→0

u∆θ + ∆v
∆t (when ∆t→ 0, sin ∆θ → 0 and cos ∆θ = 1)

= u
dθ

dt
+ dv

dt

= r′θ′ + d

dt
(rθ′)

= 1
r

d

dt

(
r2θ′

)
(Since 1

r

d

dt
(r2θ′) = (dr

dt
θ′) + d

dt
(rθ′))

Thus the radial and transverse components of acceleration are

r′′ − rθ′2 and 1
r

d

dt

(
r2θ′

)

3.1.3 Motion Under a Central Force

Let the force acting on a particle of mass m be mF (r) and let it be directed towards

the origin, then the equations of motion are

m
(
r′′ − rθ′2

)
= −mF (r) (3.1.1)

m

r

d

dt

(
r2θ′

)
= 0 (3.1.2)

86



From (3.1.2), Integrating
∫ m

r
d
dt

(r2θ′) =
∫

0 dt

r2θ′ = constant = h( say ), (3.1.3)

then (3.1.1) gives

r′′ − rθ′2 = −F (r) (3.1.4)

We can eliminate t between (3.1.3) and (3.1.4) to get a differential equation between

r and θ. We find it convenient to use u = 1/r instead of r, so that making use of (3.1.3),

we get

r′ = dr

dt
= dr

du

du

dθ

dθ

dt
= − 1

u2
du

dθ

h

r2 = −hdu
dθ

and

r′′ = d

dt

(
−hdu

dt

)
= d

dθ

(
−hdu

dθ

)
dθ

dt

= −hd
2u

dθ2 hu
2 = −h2u2d

2u

dθ2 (3.1.5)

From (3.1.3), (3.1.4) and (3.1.5)

−F (r) = −h2u2d
2u

dθ2 −
1
u
h2u4 = −h2u2

(
d2u

dθ2 + u

)

or

d2u

dθ2 + u = F

h2u2 (3.1.6)

where F can be easily expressed as a function of u.

This is the differential equation of the second order whose integration will give the

relation between u and θ or between r and θ i.e. the equation of the path described by

a particle moving under a central force F per unit mass.

3.1.4 Motion Under the Inverse Square Law

If the central force per unit mass is µ/r2 or µu2, Equation (3.1.6) gives
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d2u

dθ2 + u = µ

h2

Integrating this linear equation with constant coefficients, we get

u = A cos(θ − α) + µ

h2

or h
2/u

r
= L

r
= 1 + e cos(θ − α);h2 = µL, (3.1.7)

which represents a conic with a focus at the centre of force. Thus if a particle moves

under a central force µ/r2 per unit mass, the path is a conic section with a focus at the

centre. The conic can be an ellipse, parabola, or hyperbola according as e Q 1.

Now the velocity V of the particle is given by

V 2 = r′2 + r2θ′2 =
(
dr

du

du

dθ

dθ

dt

)2

+ 1
u2

(
hu2

)2

= h2
(
du

dθ

)2

+ h2u2 (3.1.8)

Using (3.1.7)

L
du

dθ
= −e sin(θ − α) (3.1.9)

From (3.1.8) and (3.1.9)

V 2 = µL

(
e2 sin2(θ − α)

L2 + (1 + e cos(θ − α)2

L2

)

= µ

L

(
1 + e2 + 2e cos(θ − α)

)
= µ

L

(
e2 − 1 + 2(1 + e cos(θ − α))

= µ

L

(
e2 − 1

)
+ 2µ

r

If the path is an ellipse L = a (1− e2)

If the path is a parabola e = 1

If the path is a hyperbola L = a (e2 − 1), so that
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V 2 = µ
(2
r

+ 1
a

)
in the case of a hyperbola

= µ
(2
r

)
in the case of a parabola

= µ
(2
r
− 1
a

)
in the case of an ellipse.

Thus if the particle is projected with velocity V from a point at a distance r from

the centre of force, the path will be a hyperbola, parabola or ellipse according as

V 2 − 2µ
r

R 0

We have proved that if the central force is µ/r2 per unit mass, the path is a conic

section with the centre of forces at one focus. Conversely if we know that the path is a

conic section

L

r
= Lu = 1 + e cos(θ − α),

with a focus at the centre of force, then the force per unit mass is given by

F = h2u2
(
d2u

dθ2 + u

)

= h2u2
(
−e cos(θ − α)

L
+ 1 + cos(θ − α)

L

)

= h2

L
u2 = µ

r2

so that the central force follows the inverse square law.

Since all planets are observed to move in elliptic orbits with the Sun at one focus, it

follows that the law of attraction between different planets and Sun must be the inverse

square law.

3.1.5 Kepler’s Laws of Planetory Motions

On the basis of the long period of observations of planetory motions by his predecessors

and by Kepler himself, Kepler deduced the following three laws of motion empirically

(i) Every planet describes an ellipse with the Sun at one focus

(ii) The radius vector from the Sun to a planet describes equal areas in equal intervals
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of time.

(iii) The squares of periodic time of planets are proportional to the cubes of the

semimajor axes of the orbits of the planets

We can deduce all these three laws from the mathematical modelling of planetory

motion discussed above, when the law of attraction is the inverse square law.

(i) We have already seen that under the inverse square law, the path has to be a

conic section and this includes elliptic orbits.

(ii) Since r2θ′ = h, we get

Lt∆t→0
1
2
r2∆θ
∆t = 1

2h (3.1.10)

From Figure 3.2, the area 4A bounded by radius vectors OP and OQ and the arc

PQ is 1/2r2 sin ∆θ so that (3.1.10) gives

dA

dt
= 1

2h

and the rate of description of sectorical area is constant and equal areas are described

in equal intervals of time. This is Kepler’s second law.

(iii) The total area of the ellipse is πab and since the areal velocity is 1
2h, the periodic

time T is given by

T = πab
1
2h

= 2πab√
µL

= 2πab
√
µ
√
b2/a

= 2π
√
µ
a3/2

For two different planets of masses P1, P2, and semiaxes of orbits a1, a2, this gives

or

T1

T2
=
√
µ2√
µ1

a
3/2
1

a
3/2
2

=

√
G (S + P2)√
G (S + P1)

a
3/2
1

a
3/2
2

T 2
1
T 2

2
= S + P2

S + P1

a3
1
a3

2
=

1 + P2
S

1 + P1
S

a3
1
a3

2

Since P1, P2 are very small compared with S, this gives, as a very good approximation

T 2
1
T 2

2
= a3

1
a3

2
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which is Kepler’s third law of planetory motion.

Deduction of Kepler’s three laws of planetory motion from the universal law of grav-

itation was an important success of mathematical modelling. Results which took hun-

dreds of years to obtain by observation could be obtained in a very short time by using

mathematical modelling.

Remark 3.1.1. Here we have neglected the forces of attraction of other planets on

the given planet. These are very small as compared with the attractive force of the

Sun. However these can be taken into account. In fact possibly the most sensational

achievement of mathematical modelling was achieved when the discrepancies from the

above theory observed in the motion of planets were explained as possibly due to the

existence of another small planet. The position of this planet, not observed till that

time, was calculated, and when the telescope was pointed out to that position in the sky,

the planet was there!

Again the occurrence of many of the fundamental particles in physics has been theo-

retically predicted on the basis of mathematical modelling.

The advantages of developing a successful theoretical model over relying in purely

observational and empirical models are that (i) this development can suggest development

of mathematical models for similar situations elsewhere and those new models can later

be validated and (ii) the theoretical models, unlike empirical models, can be generalised.

Thus the model developed by Newton for planetory motion could be easily extended to

apply to motion of artificial satellites. Similarly in urban transportation, a gravity model

was developed by trial and error and ad hoc empirical methods extending over a period of

thirty to forty years. When the same model was obtained theoretically from the principle

of maximum entropy, it could be easily generalised for many more complex situations

than could ever be handled by the empirical methods.

Let us sum up:

• Importance of researching motion under central forces.

• Elements of the acceleration and velocity vectors in the radial and transverse di-

rections.
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• Motion under a central foece.

• Motion under the inverse square law.

• The laws of Kepler for planetary motion.

Check your progress:

1. Find the e radial and transverse components of acceleration.

2. What are the three laws of Kepler’s Laws of Planetory Motions ?

3.2 Mathematical Modelling of Circular Motion and

Motion of Satellites

3.2.1 Circular Motion

When a particle moves in a circle of radius a so that r = a,

the radial component of velocity = r′ = 0,

the transverse component of velocity = rθ′ = aθ′

the radial component of acceleration = r′′ − rθ′2 = −aθ′2,

the transverse component of acceleration = 1
r
d
dt

(r2θ′) = 1
a
d
dt

(a2θ′) = aθ′′.

Thus the velocity is aθ′ along the tangent and the acceleration has two components

aθ′′ along the tangent and aθ′2 along the normal.

If a particle moves in a circle of radius a, its equations of motion are maθ′′ = external

force in the direction of the tangent maθ′2 = external force in the direction of the inward

normal.

Thus if a particle is attached to one end of a string, the other end of which is fixed

and the particle moves in a vertical circle, the equations of motion are (Figure 3.4)

maθ′′ = −mg sin θ (3.2.11)

maθ′2 = T −mg sin θ (3.2.12)
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Figure 3.4

If θ is small, (3.2.11) gives

θ′′ = −g
a
θ (|sinθ| = 1)

which is the equation for a simple harmonic motion. Thus for small oscillations of a

simple pendulum, the time period is

T = 2π
√
a/g

If θ is not necessarily small, integration of (3.2.14) gives

a
∫
θ′′dθ = g

∫
sin θ

aθ′ = −g cos θ + A

aθ′2 = 2g cos θ + constant

If the particle is projected from the lowest point with velocity u, then aθ′ = u when

θ = 0, so that

aθ′2 = v2

a
= u2

a
− 2g(1− cos θ)

where v is the velocity of the particle, so that

93



v2 = u2 − 2ga(1− cos θ)

or
1
2mv

2 = 1
2mu

2 −mga(1− cos θ) = 1
2mu

2 −mgh (3.2.13)

where h is the vertical distance travelled by the particle. Equation (3.2.13) can be

obtained directly from the principle of conservation of energy. Equation (3.2.12) then

gives

T = m
v2

a
+mg cos θ = m

u2

a
− 2mg + 3mg cos θ

At the highest point θ = π and T = mu2

a
− 5mg.

If u2 > 5ag, the particle will move in the complete vertical circle again and again.

However if u2 < 5ag, tension will vanish before the particle reaches the highest point.

When the tension vanishes, the particle begins to move freely under gravity and

describes a parabolic path till the string again becomes tight and the circular motion is

started again.

3.2.2 Motion of a Particle on a Smooth or Rough Vertical Wire

(a) If the particle moves on the inside of a smooth wire, the equations of motion (Fig.

3.5a) are:

maθ′′ = −mg sin θ (3.2.14)

maθ′2 = R−mg cos θ (3.2.15)

These are the same as (3.2.11) and (3.2.12) when T is replaced by the normal reaction

R.

As such if u2 > 5ag, the particle makes an indefinite number of complete rounds of

the circular wire.

If u2 < 5ag, the reaction vanishes before the particle reaches the highest point, the

particle leaves the curve, describes a parabolic path till it meets the circular wire again

and it again describes a circular path.
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(a) (b)

Figure 3.5

This motion is repeated again and again.

(b) If the particle moves on the outside of the smooth vertical wire (Fig. 3.5b), the

equations of motion are

maθ′′ = mg sin θ (3.2.16)

maθ′2 = −R +mg cos θ (3.2.17)

Integrating (3.2.16)

a
∫
θ′′dθ = g

∫
sin θ

aθ′ = −g cos θ + A

θ′2 = u2 + 2ga(1− cos θ)

Using (3.2.17) R = 3mg cos θ −mg − mu2

a

At the highets point θ = 0, R = mg − mu2

a

At the point A,

θ = π/2, R = −mu
2

a
− 2mg

If u2 > ag, the particle leaves contact with the wire immediately and describes a

parabolic path.
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If u2 < ga, the particle remains in contact for some distance, but leaves contact when

R vanishes i.e. before it reaches A and then it describes a parabolic path.

(c) If the particle moves on the inside of rough vertical circular wire, then there is

an additional frictional force µR along the tangent opposing the motion.

As such equations (3.2.14) and (3.2.15) are modified to

maθ′′ = −mg sin θ − µR

maθ′2 = −mg cos θ +R =⇒ R = maθ′2 +mg cos θ

Eliminating R between these equations, we get a non-linear differential equation

maθ′′ = −mg sin θ − µ
(
mg cos θ +maθ′2

)
aθ′′ = −g sin θ − µ

(
g cos θ + aθ′2

)
which can be integrated by substituting θ′ = w, θ′′ = wdw/dθ.

Similarly (3.2.16) and (3.2.17) are modified to

maθ′′ = mg sin θ − µR

maθ′2 = −R +mg cos θ

We can again eliminate R, solve for θ′ and θ and find the value of θ when R vanishes.

3.2.3 Circular Motion of Satellites

Just as planets move in elliptic orbits with the Sun in one focus, the manmade artificial

satellites move in elliptic (or circular) orbits with the Earth (or rather its centre) at one

focus.

If the Earth is of mass M and radius a and a satellite of mass m(�M) is projected

from a point P at a height h above the Earth with velocity V at right angles to OP

(Figure 3.6) it will move under a central force GmM/r2.

Since the central force of a circular orbits is mV 2/r, we get, if the path is to be

circular,
mV 2

a+ h
= GmM

(a+ h)2 or V 2 = GM

a+ h
(3.2.18)
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Figure 3.6

If g is the acceleration due to gravity, then the gravitational force on a particle of

mass m on the surface of the Earth is mg.

Alternatively from Newton’s inverse square law, it is GMm/a2 so that

GMm

a2 = mg or GM = ga2 (3.2.19)

From (3.2.18) and (3.2.19)

V 2 = ga2

a+ h

This gives the velocity of a satellite describing a circular orbit at a height h above the

surface of the Earth. Its time period is given by

T = 2π(a+ h)
V

= 2π(a+ h)
√
ga

(a+ h)1/2 = 2π
√
ga

(a+ h)3/2

The earth makes completes one revolution about its axis in twenty-four hours.

As such if T is 24 hours, the satellite would have the same period as the Earth and

would appear stationary, to an observer on the Earth.

Now taking g = 32ft/sec2, a = 4000 miles, T = 24 hours, we get if h is measured in

miles
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((4000 + h)× 1760× 3)3/2 = 24× 60× 60
√

32× 4000× 1760× 3× 7
2× 22

= 1642607.416× 106

(4000 + h)× 5280 = 13919.3408× 104

4000 + h = 26.36238788× 103 = 26362.38788

h = 22362.38788miles

This gives the height of the synchronous or synchron satellite which is very useful

for communication purposes.

3.2.4 Elliptic Motion of Satellites

If a satellite is projected at a height a+ h above the centre of the Earth with a velocity

different from √ga/
√
a+ h or if it is not projected at right angles to the radius vector,

the orbit will not be circular, but can be elliptic, parabolic or hyperbolic depending on

V and the angle of projection.

If the angle of projection is 90◦ and the orbit is an elliptic with semi major axis a′

and eccentricity e, then there are two possibilities depending on whether the point of

projection is the apogoes on the perigee

Figure 3.7

Using equation V 2 = µ(2
r
− 1

a
) in the case of ellipse,

V 2 = µ

(
2

a′(1 + e) −
1
a′

)
, a′(1 + e) = a+ h

or
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V 2 = µ

(
2

a′(1− e) −
1
a′

)
, a′(1− e) = a+ h

i.e. V 2 = ga2

a+h(1− e) or V 2 = ga2

a+h(1 + e)

i.e. V 2 = V 2
0 (1− e) or V 2 = V 2

0 (1 + e),

where V0 is the velocity required for a circular orbit for which e = 0. Thus if V > V0,

the point of projection is nearest point of the orbit to the centre of the Earth and if

V < V0, this point is the furthest point.

For the elliptic orbit, the time period is

T = 2π
√
ga
a′3/2

where if V < V0, V
2 = V 2

0 (1− e) =⇒ e =
√

1− V 2

V 2
0
, and

a′(1 + e) = a+ h =⇒ a′ = a+h
1+
√

1−V 2/V 2
0

and if V > V0, V 2 = V 2
0 (1 + e) =⇒ e =

√
V 2

V 2
0
− 1,, and

a′(1 − e) = a + h =⇒ a′ = a+h
1−
√
V 2/V 2

0 −1
If hmax and hmin are the maximum and

minimum heights of a satellite above the Earth’s surface and a is the radius of the Earth,

we get
a′(1 + e)
a′(1− e) = a+ hmax

a+ hmin
or 1 + e

a+ hmax
= 1− e
a+ hmin

= 2
2a+ hmax + hmin

or

1 + e

a+ hmax
= 1
a+ hmax+hmin

2
= e

hmax−hmin
2

e = hmax − hmin

2a+ hmax − hmin

Let us sum up:

• Circular motion.

• Particle motion on a smooth or rough vertical wire.

• Circular and elliptic motion of satellite.
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Check your progress:

1. What is the time period of small oscillations of a simple pendulum?

2. Give the equations if the particle moves on the inside and outside of a smooth

wire.

3. What is the time period for elliptic orbit ?

3.3 Linear Second Order Differential Equations

3.3.1 Rectilinear Motion

Let one end 0 of an elastic string of natural length L(= 0A) be fixed (Figure 3.8) and

let the other end to which a particle of mass m is attached

Figure 3.8

be stretched a distance a and then released. At any time t, let x(t) be the extension,

then the equation of motion of the particle is

m
d2x

dt2
= −λx

L
= −kx (3.3.20)

where k is the elastic constant. If the particle moves in a resisting medium with

resistance proportional to the velocity x′,(3.3.20) becomes

mx′′ + cx′ + kx = 0 (3.3.21)

which is a linear differential equation of the second order. Its solution is

x(t) = A1e
λ1t + Aeλ2t

where λ1, λ2 are the roots of
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mλ2 + cλ+ k = 0

Here λ1 + λ2 = − c
m
, λ1λ2 = k

m
. The sum of the roots is negative and the product of

the roots is positive.

Case (i) c2 > 4 km, the roots are real and distinct and are negative. As such x(t)→ 0

as t→∞. The motion is said be overdamped.

Case (ii) c2 = 4 km, the roots are real and equal and

x(t) = (A1 + A2t) exp
(
− c

2mt
)

and again x(t)→ 0 as t→∞. In this case the motion is said to be critically damped.

Case (iii) c2 < 4 km, the roots are complex conjugate with the real parts of the roots

negative. x(t) always oscillates but oscillations are damped out and tend to zero. In

this case, the motion is said to be under damped.

Next we consider the case when there is an external force m · F (t) acting on the

particle. In this case (3.3.21) becomes

mx′′ + cx′ + kx = mF (t) (3.3.22)

A particular case of interest is given by the model

x′′ + w2
0x = F coswt (3.3.23)

i.e., when in the absence of the external force, the motion is simple harmonic with

period 2π/w0 and the external force is periodic with period 2π/w. The solution of

(3.3.23) is given by

A.E is m2 + w2
0 = 0

m = ±iw

C.F = A cosw0t−B sinw0t

P.I = F coswt
D2−w2

0

= F coswt
w2−w2

0
if w 6= w0
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= tF coswt
2D if w = w0

=⇒ = F coswt
w2−w2

0
if w 6= w0

= F
2w0

t sinw0t if w = w0

Hence
x(t) = A cos (w0t− α) + F coswtt

(
w2

0 − w2
)

w 6= w0

= A cos (w0t− α) + F

2w0
t sinw0t w = w0

When w = w0, the first term is periodic and its amplitude never exceeds |A|. However

as t → ∞ along a sequence for which sinµ0t = ±1, the magnitude of the second term

approaches infinity.

The phenomenon we have discussed here is known as of pure or undamped resonance.

It occurs when c = 0 and the input and natural frequencies are equal. We shall get a

similar phenomenon when c is small. The forcing function F coswt is then said to be in

resonance with the system.

Bridges, cars, planes, ships are vibrating systems and an external periodic force with

the same frequency as their natural frequency can damage them. This is the reason

why soldiers crossing a bridge are not allowed to march in step. However resonance

phenomenon can also be used to advantage e.g. in uprooting trees or in getting a car

out of a ditch.

When w and w0 differ only slightly, the solution represents superposition of two

sinusoidal waves whose periods differ only slightly and this leads to the occurrence of

beats.

3.3.2 Electrical Circuits

Figure 3.9 shows an electrical circuit. The current i(t) amperes represents the time rate

of change of charge q flowing in the circuits, so that

dq

dt
= i(t) (3.3.24)

(i) There is a resistance of R Ohms in the circuit. This may be provided by a light

bulb, an electric heater or any other electrical device opposing the motion of the charge
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and causing a potential drop of magnitude ER = Ri volts.

Figure 3.9

(ii) There is an induction of inductance L henrys which produces a potential drop

EL = L dildt.

(iii) There is a capacitance C which produces a potential drop

Ec = 1
C
q

All these potential drops are balanced by the battery which produces a voltage E

volts. Now according to Kirchhoff’s second law, the algebraic sum of the voltage drops

round a closed circuit is zero so that

Ri+ L
di

dt
+ 1
C
q = E(t) (3.3.25)

Differentiating and using (3.3.24), we get

L
d2i

dt2
+R

di

dt
+ 1
C
i = dE

dt
. (3.3.26)

Also substituting (3.3.24) in (3.3.25) we get

L
d2q

dt2
+R

dq

dt
+ 1
C
q = E(t) (3.3.27)

Both (3.3.26) and (3.3.27) represent linear differential equations with constant coef-

ficients and their solutions will determine i(t) and q(t).

Comparing (3.3.22) and (3.3.27), we get the correspondences

mass m ↔ inductance L
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friction coefficient c↔ resistance R

spring constant k ↔ inverse capacitance 1/C

impressed force F ↔ impressed voltage E

displacement x↔ charge q

velocity v = dx/dt↔ current i = dq
dt

.

This shows the correspondence between mechanical and electrical systems. This

forms the basis of analogue computers.

A linear differential equation of the second order can be solved by forming an elec-

trical circuit and measuring the electric current in it. Similar analogues exist between

hydrodynamical and electrical systems.

Mathematical modelling brings out the isomorphisms between mathematical struc-

tures of quite different systems and gives a method for solving all these models in terms

of the simplest of these models.

We can have analogues of (3.3.22), (3.3.27) in economic system when k(t) represents

the excess of the capital invested over the equilibrium capital and E(t) can represent

external investments.

3.3.3 Phillip’s Stabilization Model for a Closed Economy

The assumptions of the model are:

(i) The producers adjust the national production Y of a product according to the

aggregate demand D.

If D > Y , they increase production and if D < Y , they decrease production so that

we get

dY | dt = α(D − Y ), α > 0 (3.3.28)

where α is a reaction coefficient representing the velocity of adjustment.

(ii) Aggregate demand D is the sum of private demand, government demand G and

an exogenous disturbance u.

The private demand in proportional to the national income or output so that

104



D = (1− L)Y +G− u (3.3.29)

where 1−L is the marginal propensity to spend i.e. it is the marginal propensity to

consume plus the marginal propensity to invest. We assume that 0 < L < 1.

(iii) The government adjusts its demand to bring the national out-put to a desired

level, which without loss of generality may be taken as zero.

The Government decides its demand according to one of the following policies:

(a) proportionate stabilization policy according to which

G∗ = −fpY (3.3.30)

where fp > 0 is the coefficient of proportionality and we use the negative sign on the

right hand side since if the output is less than the described level, government will come

out with a positive demand.

(b) derivative stabilization policy according to which

G∗ = −fdY ′, (3.3.31)

where fd > 0 and the government demand is proportional to Y ′.

(c) mixed proportionate derivative policy according to which

G∗ = −fpY − fdY ′ (3.3.32)

(d) integral stabilization policy according to which

G∗ = −fI
∫ t

0
Y dt, fI > 0 (3.3.33)

(iv) G∗ is the potential demand which the Government may like to make, but the

actual demand G will be gradually adjusted so that

G′ = β (G∗ −G) (3.3.34)

where β is the reaction coefficient. β > 0 since if G < G∗, the government tends to

increase the demand to reach G∗.
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Now from (3.3.28) and (3.3.29)

dY/dt = α((1− L)Y +G− u− Y ) (3.3.35)

=⇒ G = dY/dt

α
+ (LY + u)

so that

d2Y/dt2 = αdY/dt− αLdY/dt+ αdG/dt− αdY/dt

d2Y/dt2 = −αLdY/dt+ αdG/dt (3.3.36)

Eliminating G between (3.3.34), (3.3.35) and (3.3.36)

d2Y/dt2

α
+ LdY/dt = β (G∗ −G)

d2Y/dt2

α
+ LdY/dt = β

(
G∗ − dY/dt

α
− (Ly + u)

)
(3.3.37)

or

d2Y/dt2 + dY/dt(αL+ β) + αBLY + αβu = αβG∗ (3.3.38)

If we substitute for G∗ from (3.3.30), (3.3.31) or (3.3.32), we get a linear differential

equation of the second order with constant coefficients.

If however the government uses integral stabilization policy, we use (3.3.33) to get

the third order differential equation

d3Y/dt3 + (α1 + β)d2Y/dt2 + αβdY/dt+ αβfIY = 0 (3.3.39)

The equations (3.3.38) and (3.3.39) can be easily solved. Even without solving these,

the stability of the solutions and their behaviour as t→∞ can be easily obtained.

Let us sum up:

• Rectilinear motion.
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• Electrical circuit.

• Phillips’s Closed-economy stabilization model.

Check your progress:

1. What is the solution of the differential equation of a the particle moves in a resisting

medium with resistance proportional to the velocity x′?

2. What are the policies that deals Phillip’s Stabilization Model for a Closed Econ-

omy?

3.4 Miscellaneous Mathematical Models

3.4.1 The Catenary

Problem 3.4.1. Derive the equation of Catenary using mathematical modelling.

Solution. A perfectly inflexible string is suspended under gravity from two fixed

points A and B (Fig. 3.10).

Figure 3.10

Consider the equilibrium of the part CD of the string of length s where C is the

lowest point of the string at which the tangent is horizontal.

The forces acting on this part of the string are (i) tension T0 at C (ii) tension T at

point D along tangent at D (iii) weight ws of the string.

Equating the horizontal and vertical components of forces, we get

107



T cosψ = T0, T sinψ = ws (3.4.40)

Let T0 be equal to weight of length c of the string, then (3.4.40) give

tanψ = ws
To

= ws
wc

= s
c

ds
dψ

= ρ = c sec2 ψ,

where ρ is radius of curvature of the string at D; so that

(
1 +

(
dy
dx

)2
)3/2

d2y
dx2

= c

1 +
(
dy

dx

)2


c

(
d2y

dx2

)
=

1 +
(
dy

dx

)2
1/2

, (3.4.41)

which is a non-linear differential equation of second order. If dy
dx

= p, then (3.4.41)

gives

c
dp√

1 + p2 = dx

Integrating ∫ dp√
1 + p2 = 1

c

∫
dx

sinh−1 p = x

c
+ A

When x = 0, p = 0, so that A = 0 and

dy

dx
= sinh x

c

Integrating

y = c cosh x
c
,

where we choose x-axis in such a way that y = c when x = 0. This is the equation
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of the common catenary.

It may be noted that here we get a differential equation of the second order from a

problem of statics rather than from a problem of dynamics.

3.4.2 A Curve of Pursuit

Problem 3.4.2. Explain a curve of pursuit with example through mathematical mod-

elling.

Solution. A ship at the point (a, 0) sights a ship at (0, 0) moving along y-axis with

a uniform velocity ku(0 < k < 1). It begins to pursue ship B with a velocity u always

moving in the direction of the ship B so that at any time AB is along the tangent to

the path of A.

From Figure 3.11

tan(π − ψ) = kut− y
x

−dy
dx

= −y
x

+ kut

x

x
dy

dx
− y = −kut (3.4.42)

Differentiating with respect to x, we get

x
d2y

dx
= −ku dt

dx
(3.4.43)

Now dx/dt = horizontal component of velocity of A = u cos(π − ψ)

= −u cosψ = − u√
1 +

(
dy
dx

)2

so that from (3.4.42) and (3.4.43)

x
d2y

dx2 = k

√√√√1 +
(
dy

dx

)2

Putting dy
dx

= p, we get

Integrating

109



Figure 3.11

1
k

∫ dp√
1 + p2 =

∫ dx

x
1
k

sinh(p) = log x− log a
dy

dx
= k

(
sinh−1

(
ln x
a

))
Integrating once again, we get y as a function of x.

Let us sum up:

• The catenary.

• A curve of pursuit.

Check your progress:

1. Explain The Catenary and a curve of pursuit.

Summary:

In this unit, we have modelled and analysed the planetary motions, circular motion

and motion of satellites. In addition, to modelled planetary motions through linear

differential equations of second order. Finally, we solved simple problems in second-

order ordinary differential equations.
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Glossary:

Velocity and acceleration vectors, Radial and transverse direction, Central force, Inverse

square law, Kepler’s laws, Circular motion.

Self Assessment Questions

1. What are the types of Mathematical modelling of Planetary motion?

2. Find the value of g at the surface of the Sun.

3. Show that the force required to make a particle of mass move in a circular orbit

of radius a with velocity ν is mν2/a directed towards the centre.

4. Solve x′′ + 13x′ + 36x = 0;x(0) = 1, x′(0) = 0 and plot x(t) against t .

Exercises

1. Find the central force F (r) if the orbit is an ellipse with the centre of force coin-

ciding with the centre of the ellipse.

2. Complete the discussion of motion of a particle on the inside of a smooth vertical

circular wire when it is projected from the lowest period with horizontal velocity

2√ag.

3. Solve x′′ + 8x′ + 36x = 24 cos 6t and discuss the behaviour of the solution as t

approaches infinity.

4. Obtain the curves of pursuit when k = 1, k > 1.

Answers for check your progress

Section 3.1

1. r′′ − rθ′2 and 1
r
d
dt

(r2θ′)
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2. (i) Every planet describes an ellipse with the Sun at one focus (ii) The radius vector

from the Sun to a planet describes equal areas in equal intervals of time.(iii) The

squares of periodic time of planets are proportional to the cubes of the semi major

axes of the orbits of the planets

Section 3.2

1. T = 2π
√
a/g

2. If the particle moves on the inside of a smooth wire, the equations of motion are

maθ′′ = −mg sin θ,maθ′2 = R −mg cos θ. If the particle moves on the outside of

the smooth vertical wire, the equations of motion are maθ′′ = mg sin θ,maθ′2 =

−R +mg cos θ.

3. T = 2π√
ga
a′3/2

Section 3.3

1. x(t) = eλ1t + eλ2t

2. Proportionate stabilization policy, Derivative stabilization policy, Mixed propor-

tionate derivative policy, Integral stabilization policy.

Section 3.4

1. Refer Section 3.4
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UNIT - 4
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Unit 4

Mathematical Modelling Through Dif-

ference Equations

Objectives:

• Introduce simple models through difference equations.

• Recall the basic theory of linear difference equations with constant coefficients.

• To develop models in economics and finance ? population dynamics and genetics.

• To solve simple problems.

4.1 The Mathematical Modelling through Mifference

Equations

We need difference equation models when either the independent variable is discrete or it

is mathematically convenient to treat it as a discrete variable. Thus in genetics, the ge-

netic characteristics change from generation to generation and the variable representing

a generation is a discrete variable.

In Economics, the price changes are considered from year to year or from month to

month or from week to week or from day to day. In every case, the time variable is

discretized.
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In Population Dynamics, we consider the changes in population from one age-group

to another and the variable representing the age-group is a discrete variable.

In finding the probability of n persons in a queue or the probability of n persons in

a state or the probability of n successes in a certain number of trials, the independent

variable is discrete.

For mathematical modelling through differential equations, we give an increment ∆x

to independent variable x, find the change ∆y in y and let ∆x → 0 to get differential

equations. In most cases, we cannot justify the limiting process rigorously. Thus for

modelling fluid motion, making ∆x→ 0 has no meaning since a fluid consists of a large

number of particles and the distance between two neighbouring particles cannot be made

arbitrary small. Continuum mechanics is only an approximation (through fortunately a

very good one) to reality.

Even if the limiting process can be justified e.g. when the independent variable is

time, the resulting differential equation may not be solvable analytically. We then solve

it numerically and for this purpose, we again replace the differential equation by a system

of difference equations. Numerical methods of solving differential equations essentially

mean solving difference equations.

It is even argued that since in most cases, we have to ultimately solve difference

equations, we may avoid modelling through differential equations altogether. This is of

course going too far since as we have seen in earlier chapters, mathematical modelling

through differential equations is of immense importance to science and technology. An-

other argument in favour of difference equation models is that those biological and social

scientists who do not know calculus and transcendental numbers like e can still work

with difference equation models and some important consequences of these models can

be deduced with the help of even pocket calculators by even high school students.

We now give simple difference equation models parallel to the differential equation

models studied in earlier chapters.

(i) Population Growth Model: If the population at time t is x(t), then assuming that

the number of births and deaths in the next unit interval of time are proportional to the

populations at time t, we get the model:
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x(t+ 1)− x(t) = bx(t)− dx(t) or x(t+ 1) = ax(t)

so that

x(t) = ax(t− 1) = a2x(t− 2) = a3x(t− 3) = . . . = atx(0)

This may be compared with the differential equation model:

dx

di
= ax with the solution x(t) = x(0)eat

For solving the difference equation model, we require only simple algebra, but for

solving the differential equation model, we require knowledge of calculus, differential

equation and exponential functions.

(ii) Logistic Growth Model: This is given by

x(t+ 1)− x(t) = ax(t)− bx2(t)

This is not easy to solve, but given x(0), we can find x(1), x(2), x(3), . . . in succession

and we can get a fairly good idea of the behaviour of the model with the help of a pocket

calculator.

(iii) Prey-Predator Model: This is given by

x(t+ 1)− x(t) = −ax(t) + bx(t)y(t)

y(t+ 1)− y(t) = py(t)− qx(t)y(t)

 a, b > 0

p, q > 0

and again given x(0), y(0), we can find x(1), y(1);x(2), y(2);x(3), y(3), . . ., in succes-

sion.

(iv) Competition Model: This is given by

x(t+ 1)− x(t) = ax(t)− bx(t)y(t)

y(t+ 1)− y(t) = px(t)− qx(t)y(t)

 a, b > 0

p, q > 0

(v) Simple Epidemics Model: This is given by
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x(t+ 1)− x(t) = −βx(t)y(t)

y(t+ 1)− y(t) = βx(t)y(t)

 , β > 0

Check your progress:

1. Give simple difference equation models parallel to the differential equation models

studied.

4.2 Linear Difference Equations with Constant Co-

efficients

This theory is parallel to the corresponding theory of linear differential equations

with constant coefficients, but is not usually taught in many places. We are therefore

including a brief account here.

4.2.1 The Linear Difference Equation

An equation of the form

f (xt+n, xt+n−1, . . . , xt, t) = 0

is called a difference equations of nth order. The equation

f0(t)xt+n + f1(t)xt+n−1 + . . .+ fn(t)xt = ϕ(t)

is called a linear difference equation, since it involves xt, xt+1, . . . , xt+n only in the first

degree.

The equation

a0xt+n + a1xt+n−1 + . . .+ anxt = ϕ(t) (4.2.1)

is called a linear difference equation with constant coefficients.
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The equation

a0xt+n + a1xt+n−1 + . . .+ anxt = 0 (4.2.2)

is called a homogeneous linear difference equations with constant coefficients.

Let xt = g1(t), g2(t), . . . , gn(t) be n linearly independent solutions of (4.2.2), then it

is easily seen that

xt = A1g1(t) + A2g2(t) + . . .+ Angn(t)

is also a solution of (4.2.2) where A1, A2, . . . , An are n arbitrary constants. This is the

most general solution of (4.2.2).

Again it can be shown that if G1(t) is the solution of (4.2.2) containing n arbitrary

constants and G2(t) is any particular solution of (4.2.1) containing no arbitrary con-

stant, then G1(t) + G2(t) is the most general solution of (4.2.1), G1(t) is called the

complementary function and G2 is called a particular solution.

4.2.2 The Complementary Function

Problem 4.2.1. Describe the Complementary Function for the difference equation of

nth order a0xt+n + a1xt+n−1 + . . .+ anxt = 0.

Solution

We try the solution xt = aλt. If this satisfies (4.2.2), we get

g(λ) ≡ a0λ
n + a1λ

n−1 + a2λ
n−2 + . . .+ an = 0

This algebraic equation of nth degree has n roots λ1, λ2, . . . , λn, real or complex. The

complementary function is then given by

G1(t) = c1λ
t
1 + c2λ

t
2 + . . .+ cnλ

t
n (4.2.3)

Case (i): If λ1, λ2, . . . , λn are all real and distinct, (4.2.3) gives us the complementary

function when c1, c2, . . . , cn are any n arbitrary real constants.

Case (ii): If two of the roots λ1, λ2 are equal, then (4.2.3) contains only n−1 arbitrary
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constants and as such it cannot be the most general solution. We try the solution ctλt1.

We get

a0(t+ n)λn1 + a1(t+ n− 1)λn−1
1 + . . .+ an = 0

or tg (λ1) + g′ (λ1) = 0,

which is identically satisfied since both g (λ1) = 0 and g′ (λ1) = 0 as λ1 is a repeated

root. In this case

G1(t) = (c1 + c2t)λt1 + c3λ
t
3 + c4λ

t
4 + . . .+ cnλ

t
n

Case (iii): If a root λ1 is repeated k times, the complementary function is

G1(t) =
(
c1 + c2t+ c3t

2 + . . .+ ckt
k−1

)
λt1 + ck+1λ

t
k+1

+ . . .+ cnλ
t
n

Case (iv): Let g(λ) = 0 have two complex roots α ± iβ, then their contribution to

complementary function is

c1(α + iβ)t + c2(α− iβ)t

Putting α = r cos θ, β = r sin θ and using De Moivre’s theorem, this reduces to

c1r
t(cos θ + i sin θ)t + c2r

t(cos θ − i sin θ)t = rt cos(θt) (c1 + c2) + rt sin(θt) (ic1 − ic2)

= rt (d1 cos(θt) + d2 sin(θt))

=
(
α2 + β2

)t/2
(d1 cos(θt) + d2 sin(θt)) ,

where tan θ = β
α

and d1, d2 are arbitrary constants.

Case (v): If the complex roots α± iβ are repeated k times, then contribution to the

complementary function is

(
α2 + β2

)t/2 ((
d0 + d1t+ . . .+ dk−1t

k−1 cos(θt)
)

+
(
f0 + f1t+ . . .+ fk−1t

k−1
)

sin(θt)
)
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where d0, d1, . . . , dk−1, f0, . . . , fk−1 are 2k arbitrary constants.

4.2.3 The Particular Solution

Here we want a solution of (4.2.1) not containing any arbitrary constant.

Case (i): Let ϕ(t) = ABt, B is not a root of g(λ) = 0

We try the solution CBt. Substituting in (4.2.1), we get

CBt
(
a0B

n + a1B
n−1 + . . .+ an

)
= ABt

If B 6= λ1, λ2, . . . , λn, we get

C = A

a0Bn + a1Bn−1 + . . .+ an

and the particular solution is

ABt

a0Bn + a1Bn−1 + . . .+ an

Case (ii): Let ϕ(t) = ABt, B is a non-repeated root of g(λ) = 0

We try the solution CtBt. Substituting in (4.2.1), we get

Bt (Ctg(B) + Cg′(B)) = ABt

Since g(B) = 0, g′(B) 6= 0

C = A

g′(B)

so that the particular solution is

AtBt

a0nBn−1 + a1(n− 1)Bn−2 + . . .+ an−1

Case (iii): Let ϕ(t) = ABt, g(B) = 0, g′(B) = 0, . . . , g(k−1)(B) = 0, g(k)(B) 6= 0
then the particular solution is

Atk−1Bt

g(k)(B)
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Case (iv): Let

ϕ(t) = Atk

We try the solution

d0t
k + d1t

k−1 + d2t
k−2 + . . .+ dk

Substituting in (4.2.1) we get

a0
(
d0(t+ n)k + d1(t+ n)k−1 + d2(t+ n)k−2 + . . .+ dk

)
+ a1

(
d0(t+ n− 1) + d1(t+ n− 1)k−1 + d2(t+ n− 1)k−2

+ . . .+ dk) + . . .+ an
(
d0t

k + d1t
k−1 + d2t

k−2 + . . .+ dk
)

= 0

Equating the coefficients of tk, tk−1, . . . , t0, on both sides, we get (k+ 1) equations which

in general will enable us to determine d0, d1, d2, . . . , dk and thus the particular solution

will be determined.

4.2.4 Obtaining Complementary Function by Use of Matrices

Let

xt = x1(t)

xt+1 = x2(t) = x1(t+ 1)

xt+2 = x3(t) = x2(t+ 1) (4.2.4)

· · · · · ·

xt+n = xn+1(t) = xn(t+ 1),

so that a0xt+n + a1xt+n−1 + . . .+ anxt = 0 becomes

a0xn(t+ 1) = −a1xn(t)− a2xn−1(t)− . . .− anx1(t) (4.2.5)

Equations (4.2.4) and (4.2.5) give

x1(t+ 1) =x2(t)
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x2(t+ 1) =x3(t)

· · · · · ·

xn−1(t+ 1) =xn(t)

xn(t+ 1) =− a1

a0
xn(t)− a2

a0
xn−1(t)− · · · − an

a0
x1(t),

which can be written in the matrix form



x1(t+ 1)

x2(t+ 1)
...

xn(t+ 1)




0 1 0 · · · 0

0 0 1 · · · 0

· · · · · · · · · · · · · · ·

−an
a0
−an−1

a0
−an−2

a0
· · · −a1

a0





x1(t)

x2(t)

·

·

xn(t)


(38)

or

X(t+ 1) = AX(t) (4.2.6)

where X(t) =



x1(t)

x2(t)
...

xn(t)


,

A =



0 1 0 · · · 0

0 0 1 · · · 0

· · · · · · · · · · · · ·

−an
a0
−an−1

a0
−an−2

a0
· · · −a1

a0


Applying (4.2.6) repeatedly

X(k) = AkX(0)

123



where

X(0) =



x1(0)

x2(0)

x3(0)

·

xn(0)


=



x1(0)

x1(1)

x1(2)
...

x1(n− 1)


=



x0

x1

x2
...

xn−1


Thus knowing the values of x1 at times 0, 1, 2 . . . , n− 1, we can find its value at all

subsequent times.

4.2.5 Solution of a System of Linear Homogeneous Difference Equations

with Constant Coefficients

Let the system be given by

x1(t+ 1) = a11x1(t) + a12x2(t) + . . .+ a1nxn(t)

x2(t+ 1) = a21x1(t) + a22x2(t) + . . .+ a2nxn(t)

xn(t+ 1) = an1x1(t) + an2x2(t) + . . .+ annxn(t)

This can be written in the matrix form

where

X(t+ 1) = AX(t) (4.2.7)

X(t) =



x1(t)

x2(t)
...

·

xn(t)


, A =


a11 a12 . . . a1n

a21 a22 . . . a2n

· · · ann



Applying (4.2.7) repeatedly, we get

X(k) = AkX(0)
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4.2.6 Solution of Linear Difference Equations by Using Laplace Transform

Let the linear difference equation be

a0f(t) + a1f(t− 1) + . . .+ anf(t− n) = ϕ(t)

f(t) = 0 when t < 0

Let ~f(λ) be the Laplace transform of f(t) so that

f̄(λ) = L(f(t)) =
∫ ∞

0
e−λtf(t)dt

then L(f(t− 1)) =
∫∞
1 e−λtf(t− 1)dt

= e−λ
∫ ∞

0
e−λtf(t)dt = e−λf̄(λ)

L(f(t− 2)) =
∫ ∞

2
e−λtf(t− 2)dt

= e−2λ
∫ ∞

0
e−λtf(t)dt = e−2λf̄(λ) (4.2.8)

and so on so that taking Laplace transform of both sides of (4.2.8), we get

(
a0 + a1e

−λ + a2e
−2λ + . . .+ ane

−nλ
)
f̄(λ) = L(ϕ(t)) = ϕ̄(λ),

so that f̄(λ) is known. Inverting the Laplace transform, we get f(t). In this case t is

regarded as a continuous variate such that f(t) = 0 when t < 0.

4.2.7 Solution of Linear Difference Equations by Using z-Transform

Let {un} be an infinite sequence and t be a discrete variate, then it is better to use

the z-transform.

Hence its z-transform is defined by
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Z (un) =
∞∑
n=0

unz
−n

whenever this infinite series converges. If {un} is a probability distribution and z = 1/s,

it will be the same as the probability generating function.

The following results can be easily established

(i) If k > 0, Z (un−k) = z−kZ (un)

(ii) If k > 0, Z (un+k) = zk
[
Z (un)−∑k−1

m=0 unz
−m
]

(iii) un : 1 an ean

Z (un) : z/(z − 1) z/(z − a) z/ (z − eα)

Taking z-transform of both sides of a linear difference equation, we can find Z (un)

and expanding it in powers of 1/z and finding the coefficient of z−n, we can get un.

4.2.8 Solution of non-Linear Difference Equations Reducible to Linear Equa-

tions

The equations

yn+1 = √yn

ynyn+2 = y2
n+1

become linear on substitution un = ln yn : Also

yn+2 = ynyn+1

yn + yn+1

becomes linear on substitution un = 1/yn.

4.2.9 Stability Theory for Difference Equations

If xt = K satisfies

f (xt, xt+1, xt+2, . . . , xt+n) = 0 (4.2.9)
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then this gives an equilibrium position. To find its stability, we substitute xt = K + ut

in (4.2.9) and simplify neglecting squares and products and higher powers of ut ’s to get

a linear equation

a1ut+n + a2ut+n−1 + . . .+ anut = 0

We try the solution ut = Aλt and get the characteristic equation

a0λ
n + a1λ

n−1 + . . .+ an = 0 (4.2.10)

If the absolute value of each of the n roots of this equation is less than unity, then

ut would tend to zero as t → ∞ for all small initial disturbances and the equilibrium

position would be locally asymptotically stable.

The conditions for all the roots of (4.2.10) having magnitude less than unity are given

by Schur’s criterion viz. that all the following determinants should be positive.

Let us sum up:

• The linear difference equation.

• Using matrices to find complementary functions.
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• Solving a system of linear difference equations with constant co efficient.

• Applying the Laplace transform to solve linear difference equations.

• Z-Transform for solving linear difference equations.

• Addressing non-linear difference equations convertible to linear formulas.

• Stability theory for difference equations.

Check your progress:

1. What are the basic theory of Linear difference equations with constant coefficients?

4.3 Difference Equations in Economics and Finance

4.3.1 The Harrod Model

Let S(t), Y (t), I(t) denote the savings, national income and investment respectively. We

make now the following assumptions:

(i) Savings made by the people in a country depend on the national income i.e.

S(t) = αY (t), α > 0 (4.3.11)

(ii) The investment depends on the difference between the income of the current year

and the last year i.e.

I(t) = β(Y (t)− Y (t− 1)), β > 0 (4.3.12)

(iii) All the savings made are invested, so that

S(t) = I(t) (4.3.13)

From (4.3.11), (4.3.12) and (4.3.13), we get the difference equation

Y (t) = β

β − α
Y (t− 1),
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which has the solution

Y (t) = A

(
β

β − α

)t
= Y (0)

(
β

β − α

)t
Assuming that Y (t) is always positive,

β > α, β/(β − α) > 1,

so that the national income increases with t. The national incomes at different times

0, 1, 2, 3, . . . form a geometrical progression.

Thus if all savings are invested, savings are proportional to national income and the

investment is proportional to the excess of the current years income over the preceding

years income, then the national income increases geometrically.

4.3.2 The Cobweb Model

Let pt = price of a commodity in the year t and qt = amount of the commodity available

in the market in year t, then we make the following assumptions

(i) Amount of the commodity produced this year and available for sale is a linear

function of the price of the commodity in the last year, i.e.

qt = α + βpt−1 (4.3.14)

where β > 0 since if the last year’s price was high, the amount available this year would

also be high.

(ii) The price of the commodity this year is a linear function of the amount available

this year i.e.

pt = γ + δqt (4.3.15)

where δ < 0, since if qt is large, the price would be low. From (4.3.14) and (4.3.15)

pt − βδpt−1 = γ + αδ (4.3.16)

which has the solution
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(
pt −

αδ + γ

1− βδ

)
=
(
p0 −

αδ + γ

1− βδ

)
(βδ)t

so that

(
pt −

αδ + γ

1− βδ

)
=
(
pt−1 −

αδ + γ

1− βδ

)
(βδ)

Since βδ is negative p0, p1, p2, p3, . . . are alternatively greater and less than (αδ +

γ)/(1− βδ).

If |βδ| > 1, the deviation of pt from (αδ+γ)/(1−βδ) goes on increasing. On the other

hand if |βδ| < 1, this deviation goes on decreasing and ultimately pt → (αδ+γ)/(1−βδ)

as t→∞.

Figure 4.1 shows how the price approaches the equilibrium price pe = (αδ+γ)/(1−βδ)

as t increases in the two cases when p0 > pe and p0 < pe respectively.

Figure 4.1

In the same way, eliminating pt from (4.3.14), (4.3.15) we get

qt = α + βγ + βδqt−1

which has the solution

(
qt −

α + βγ

1− βδ

)
=
(
qc −

α + βγ

1− βδ

)
(βδ)t

so that qt also oscillates about the equilibrium quantity level

qt = (a+ βγ)/(1− βδ) if |βδ| < 1

The variation of both prices and quantities is shown simultaneously in Figure 4.2.

Suppose we start in the year zero with price p0, and quantity q0 represented by the

point A. In year 1 , the quantity q1 is given by α + βp0 and the price is given by
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Figure 4.2

p1 = γ + δq1.

This brings us to the point C in two steps via B. The path of prices and quantities

is thus given by the Cobweb path ABCDEFGHI, . . . and the equilibrium price and

quantity are given by the intersection of the two straight lines.

4.3.3 Samuelson’s Interaction Models

The basic equations for the first interaction model are:

Y (t) = C(t) + I(t), C(t) = αY (t− 1), I(t) = β[C(t)− C(t− 1)] (4.3.17)

Here the positive constant α is the marginal propensity to consume with respect to

income of the previous year and the positive constant β is the relation given by the

acceleration principle i.e. β is the increase in investment per unit of excess of this years

consumption over the last year’s.

From (4.3.17), we get the second order difference equation

Y (t)− α(1 + β)Y (t− 1) + αβY (t− 2) = 0 (4.3.18)

In the second interaction model, there is an additional investment by the government

and this investment is assumed to be a constant γ. In this case (4.3.18) is modified to

Y (t)− α(1 + β)Y (t− 1) + αβY (t− 2)− γ = 0 (4.3.19)

The solution of (4.3.18) and (4.3.19) can show either an increasing trend in Y (t) or
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a decreasing trend in Y (t) or an oscillating trend in it.

4.3.4 Application to Actuarial Science

One important aspect of actuarial science is what is called mathematics of finance or

mathematics of investment.

If a sum S0 is invested at compound interest of i per unit amount per unit time and

St is the amount at the end of time t, then we get the difference equation

St+1 = St + iSt = (1 + i)St

which has the solution

St = S0(1 + i)t

which is the well-known formula for compound interest.

Suppose a person borrows a sum S0 at compound interest i and wants to amortize

his debt, i.e. he wants to pay the amount and interest back by payment of n equal

instalments, say R, the first payment to be made at the end of the first year.

Let St be the amount due at the end of t years, then we have the difference equation

St+1 = St + iSt −R = (1 + i)St −R

Its solution is

St =
(
S0 −

R

i

)
(1 + i)t + R

i

= S0(1 + t)t −R(1 + i)t − 1
i

If the amount is paid back in n years, Sn = 0, so that

R = S0
1

1− (1 + i)−n = S0
1
a−in

, (4.3.20)

where a n̄|i called the amortization factor is the present value of an annuity of 1 per unit
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time for n periods at an interest rate i.

The functions an̄ii and (an)−1 are tabulated for common values of n and i.

Suppose an amount R is deposited at the end of every period in a bank and let St
be the amount at the end of t periods, then

St+1 = St(1 + i) +R,

so that (since S0 = 0 )

St = R
(1 + i)t − 1

i
= RS−n|i (4.3.21)

From (4.3.20) and (4.3.21)

Sn|i = (1 + i)nan̄|i

or
1
Sn|i

= 1
an|i

+ 1 (4.3.22)

If a person has to pay an amount S at the end of n years, he can do it by paying

into a sinking find an amount R per period where

R = S
1
Sn|i

where 1
Sn̄ii

is the sinking fund factor and can be tabulated by using (4.3.22).

Let us sum up:

• The Harrod model.

• The Cobweb model.

• Samuelson’s interaction models.

• Utilizing actuarial science.

133



Check your progress:

1. Explain the models through difference equations in finance and economics.

2. What are the assumptions made in the Harrod model?

3. What are the assumptions made in the cobweb model ?

4.4 Difference Equations in Population Dynamics

and Genetics

4.4.1 Non-Linear Difference Equations Model for Population Growth Non-

Linear Difference Equations

Let xt be the population at time t and let births and deaths in time-interval (t, t + 1)

be proportional to xt, then the population xt+1 at time t+ 1 is given by

xi+1 = xt + bxt − dxt = xt(1 + a)

This has the solution

xt = x0(1 + a)t (4.4.23)

so that the population increases or decreases exponentially according as a > 0 or a < 0.

We now consider the generalisation when births and deaths b and d per unit popu-

lation depend linearly on xt so that

xt+1 = xt + (b0 − b1xt)xt − (d0 + d1xt)xt

= mxt − rx2
t = mxt

(
i− r

m
xt

)
(4.4.24)

This is the simplest non-linear generalisation of (4.4.23) and gives the discrete version

of the logistic law of population growth. However this model shows many new features
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not present in the continuous version of the logistic model. Let r/mxt = yt, then (4.4.24)

becomes

yt+1 = myt (1− yt) (4.4.25)

Problem 4.4.1. Explain the one-period, 2n-period, and other periods fixed points and

their stability.

Solution

One-Period Fixed Points and Their Stability

A one-period fixed point of this equation is that value of yt for which yt+1 = yt i.e. for

which

yt = myt (1− yt) ,

so that there are two one-period fixed points 0 and (m−1)/m. If y0 = 0, then y1, y2, y3, . . .

are all zero and the population remains fixed at zero value:

If y0 = (m − 1)/m, then y1, y2, y3, . . . are all equal to (m − 1)/m. The second fixed

point exists only if m > 1.

We now discuss the stability of equilibrium of each of these equilibrium positions.

Putting yt = 0+ut in (4.4.25) and neglecting squares and higher powers of ut, we get

ut+1 = mut and since m > 0, the first equilibrium position is one of unstable equilibrium.

Again putting yt = (m − 1)/m + ut in (4.4.25) and neglecting squares and higher

powers of ut, we get

ut+1 = (2−m)ut

so that the second position of equilibrium is stable only if −1 < 2 − m < 1 or if

1 > m− 2 > −1 or if 1 < m < 3.

Thus if 0 < m < 1, there is only one one-period fixed point and it is unstable. If

1 < m < 3, there are two one-period fixed points, the first is unstable and the second is
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stable. If m > 3, there are two one-period fixed points, both of which are unstable.

Two-Period Fixed Points and Their Stability

A point is called a two-period fixed point if it repeats itself after two periods i.e. if

yt+2 = yt i.e. if

yt+2 = myt+i (1− yt+1) = m2vt (1− yt)
(
1−myt +my2

i

)
= yt

or

yt (myt − (m− 1))
(
m2y2

t −m(1 +m)yt + (1−m)
)

= 0

This is a fourth degree equation and as such there can be four two-period fixed

points. Two of these are the same as the one-period fixed points. This is obvious from

the consideration that every one-period fixed point is also a two-period fixed point. The

genuine two-period fixed points are obtained by solving the equation

m2y2
t −m(1 +m)yt + (1 +m) = 0

Its roots are real if m > 3. Thus if m > 3, the two one-period fixed points become

unstable, but two new two-period fixed points exist and we can discuss their stability as

before.

It can be shown that if m2 < m < m4, where m2 = 3 and m4 is a number slightly

greater than 3 , then the two two-period fixed points are stable but if m > m4, all the

four one- and two periods become unstable, but four new four-period fixed points exist

which are stable if m4 < m < m8 and become unstable if m > m8.

2n-Period Fixed Points and Their Stability

It can be shown that there exists an increasing infinite sequence of real numbers m2,

m4, m8, . . ., m2n,m2n+ 1, . . . such that when m2n < m < m2n+ 1 there are 2n+12n+1-

period fixed points, out of which 2n fixed points are also fixed points of lower order time

periods and all these are unstable and the remaining 2n points are genuine 2n+1 period

fixed points and are stable.

From 4.3 represents the stable fixed period points.
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Figure 4.3

When m lies between m1 and m2, there is one stable one-period fixed point.

When m lies between m2 and m4 there are two stable two-period fixed points.

When m lies between m4 and m8, there are four stable four-period fixed points, and

so on.

Fixed Points of other Periods

The sequence m2,m4,m8, . . . is bounded above by a fixed number m∗. If m > m∗, there

can be a three-period fixed point and if there is a threeperiod fixed point, there will also

be fixed points of periods,

3, 5, 7, 9, . . .

2 · 3, 2 · 5 · 2 · 7, 2 · 9, . . .

22 · 3, 22 · 5, 22 · 7, . . .

This is expressed by saying that Period Three Means Chaos.

Chaotic Behaviour of the Non-linear Model

If m lies between m8 and m16, there will be eight 16 -period stable fixed points. If a

population size starts from any one of these values, it will oscillate through fifteen other

values to return to the original value and this pattern will go on repeating itself. If we

draw the graph, it will show rapid oscillations and will look like the graph representing
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a random phenomenon. Our model is perfectly deterministic, though its behaviour may

appear to be random and stochastic.

Problem 4.4.2. What are the special features of non-linear difference equaton models

Solution

Special Features of Non-linear Difference Equation Models

The simple model illustrates the differences in behaviour between difference and differ-

ential equation models. The problems of existence and uniqueness of solutions, of the

stability of equilibrium positions are all different due to the basic fact that inspite of

similarities, the Discrete and the Continuous are really different.

4.4.2 Age-Structured Population Models

Let x1(t), x2(t), . . . , xp(t) be the population sizes of p pre-reproductive age-groups at

time t

Let xp+1(t), xp+2(t), . . . , xp+q(t) be the population sizes of q reproductive age-groups

at time t, and

Let xp+q+1(t), xp+q+2(t), . . . , xp+q+r(t) be the population sizes of r postreproductive

age-groups at time t.

Let bp+1, bp+2, . . . , bp+q be the birth rates i.e. the number of births per unit time per

individual in the reproductive age groups.

In other age-groups, the birth rates are zero.

Let d1, d2, . . . , dp+q+r be the death rates in the p+ q + r age-groups.

Let m1,m2, . . . ,mp+q+r, be the rates of migration to the next age-groups, then we

get the system of difference equations

x1(t+ 1) = bp+1xp+1(t) + . . .+ bp+qxp+q(t)− (d1 +m1)x1(t)

x2(t+ 1) = m1x1(t)− (d2 +m2)x2(t)

· · · · · · · · ·

xp+q+r−1(t+ 1) = mp+q+r−2(t)− (dp+q+r−1 +mp+q+r−1)xp+q+r−1(t)

xp+q+r(t+ 1) = mp+q+r−1xp+q+r−1(t)− (dp+q+r)xp+q+r(t)
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which can be written in the matrix form

X(t+ 1) = LX(t) (4.4.26)

where

X(t) =



x1(t)

x2(t)

·

·

xp+q+r(t)



Figure 4.4

where p+ q + r = n.

L is called the Leslie matrix (refer Figure 4.4). All the elements of its main diagonal

are negative and all the elements of its main subdiagonal are positive. In addition q

elements in the first row are positive and the rest of the elements are all zero. The

solution of (4.4.26) can be written as

X(t) = LtX(0)

Now the Leslie matrix has the property that it has a dominant eigenvalue which is

real and positive, which is greater in absolute value than any other eigenvalue and for

which the corresponding eigenvector has all its components positive.

If this dominant eigenvalue is greater than unity, then the population of all age-groups

will increase exponentially and if it is less than unity the population of all age-groups

will die out. If this dominant eigenvalue is unity, the population can have a stable age

structure.
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The Leslie model is in terms of a system of linear difference equations. If we take the

effects of overcrowding and density dependence into account, the equations are nonlinear.

4.4.3 Mathematical Modelling through Difference Equations in Genetics

(a) Hardy-Weinberg Law

Every characteristic of an individual, like height or colour of the hair, is determined by

a pair of genes, one obtained from the father and the other obtained from the mother.

Every gene occurs in two forms, a dominant (denoted by a capital letter say G ) and

a recessive (denoted by the corresponding small letter say g ).

Thus with respect to a characteristic, an individual may be a dominant (GG), a

hybrid ( Gg or gG ) or a recessive (gg ).

In the nth generation, let the proportions of dominants, hybrids and recessives be

pn, qn, rn so that

pn + qn + rn = 1, pn > 0, qn > 0, rn > 0

We assume that individuals, in this generation mate at random.

Now pn+1 = the probability that an individual in the (n+ 1) th generation is a dom-

inant (GG) = (probability that this individual gets a G from the father) × (probability

that the individual gets a G from the mother)

=
(
pn + 1

2qn
)(

pn + 1
2qn

)
=
(
pn + 1

2qn
)2

or

pn+1 =
(
pn + 1

2qn
)2

(4.4.27)

Similarly

qn+1 = 2
(
pn + 1

2qn
)(

rn + 1
2qn

)
(4.4.28)

rn+1 =
(
rn + 1

2qn
)2

(4.4.29)

so that pn+1 + qn+1 + rn+1 =
(
pn + 1

2qn + 1
2qn + rn

)2
= 1, (4.4.30)
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as expected. Similarly

pn+2 =
(
pn+1 + 1

2qn+1

)2

=
((
pn + 1

2qn
)2

+
(
pn + 1

2qn
)(

rn + 1
2qn

))2

=
(
pn + 1

2qn
)2 (

pn + 1
2qn + 1

2qn + rn

)2

=
(
pn + 1

2qn
)2

= pn+1 (4.4.31)

and

qn+2 = qn+1, rn+2 = rn+1

so that the proportions of dominants, hybrids and recessives in the (n+2) th generation

are same as in the (n+ 1) th generation.

Thus in any population in which random mating takes place with respect to a char-

acteristic, the proportions of dominants, hybrids and recessive do not change after the

first generation. This is known as Hardy-Weinberg law after the mathematician Hardy

and geneticist Weinberg who jointly discovered it.

The equations (4.4.27)-(4.4.30) is a set of difference equations of the first order.

(b) Improvement of Plants through Elimination of Recessives

Suppose the recessives are undesirable and as such we do not allow the recessives in any

generation to breed.

Let pn, qn, rn be the proportions of dominants, hybrids and recessives before elimina-

tion of recessives and let p′n, q′n, 0 be the populations after the elimination, then

p′n
pn

= q′n
qn

= p′n + q′n
pn + qn

= 1
1− rn

Now we allow random mating and let pn+1, rn+1 be the proportions in the next

generation before elimination of recessives, then using (4.4.27)-(4.4.31)
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pn+1 =
(
p′n + 1

2q
′
n

)2

qn+1 = 2
(
p′n + 1

2q
′
n

)(1
2q
′
n

)
= q′n

(
p′n + 1

2q
′
n

)
rn+1 =

(1
2q
′
n

)2
= 1

4q
′2
n

After elimination of recessives, let the new proportions be p′n+1, q
′
n+1, so that

p′n+1
pn+1

= q′n+1
qn+1

= 1
pn+1 + qn+1

= 1
1− 1

4q
′2
n

so that

q′n+1 =
q′n
(
p′n + 1

2q
′
n

)
1− 1

4q
′2
n

=
q′n
(
1− 1

2q
′
n

)
1− 1

4q
′2
n

= q′n
1 + 1

2q
′
n

This is a non-linear difference equation of the first order. To solve it we substitute

q′n = 1/un

to get un+1 = un + 1
2

which has the solution un = A+ 1
2n

or q′n = 1
A+ 1

2n
(4.4.32)

so that q′n → 0 and p′n → 1 as n → ∞. Thus ultimately we should be left with all

dominants. Equation (4.4.32) determines the rate at which hybrids disappear.

Let us sum up:

• Equations with non-linear differences population growth model equations for non-

linear differences.
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• Age-structured population models.

• Genetics: Mathematical modelling using difference equations.

Check your progress:

1. What are types of fixed points ?

2. What are the laws used in the mathematical modelling through difference equations

in Genetics?

4.5 Difference Equations in Probability Theory

4.5.1 Markov Chains

Let a system be capable of being in n possible states 1, 2, . . . , n and let the probability

of transition from state i to state j in time interval t to t+ 1 be pij. Let pj(t) denote the

probability that the system is in state j at time t (j = 1, 2, . . . , n), then at time t+ 1 it

can be in any one of the states 1, 2, . . . , n.

It can be in the i th state at time t+1 in n exclusive ways since it could have been in

any one of the n states 1, 2, . . . , n at time t and it could have transited from that state

to i th state in time interval (t, t + 1). By using the theorems of total and compound

probability, we get

pi(t+ 1) =
n∑
j=1

pjipj(t), i = 1, 2, . . . , n

Or

p1(t+ 1) = p11p1(t) + p21p2(t) + . . .+ pn1pn(t)

p2(t+ 1) = p12p1(t) + p22p2
′t) + . . .+ pn2pn(t)

pn(t+ 1) = p1np1(t) + p2np2(t) + . . .+ pnnpn(t)

or
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p1(t+ 1)

p2(t+ 1)
...

pn(t+ 1)


=



p11 p21 . . . pn1

p12 p22 . . . pn2

· · · . . . . . . · · ·

p1n p2n . . . pnn





p1(t)

p2(t)
...

pn(t)


or

P (t+ 1) = AP (t) (4.5.33)

where P (t) is a probability vector and A is a matrix, all of whose elements lie between

zero and unity (since these are all probabilities). Further the sum of elements of every

column is unity, since the sum of elements of the i th column is ∑n
j=1 ·pij as this denotes

the sum of the probabilities of the system going from the i th state to any other state

and this sum must be unity.

The solution of the matrix difference equation (4.5.33) is

P (t) = AtP (0)

If all the eigenvalues λ1, λ2, . . . , λn of A are distinct, we can write

where

A = SΛS−1

so that At =



λ1 0 0 . . . 0

0 λ2 0 . . . 0

· · · · · · · · · · · · · · ·

0 0 0 . . . λn


= SΛtS−1

) (
SΛS−1

)
. . .
(
SΛS−1

)

= S



λt1 0 0 . . . 0

0 λt2 0 . . . 0

· · · · · · · · · · · · · · ·

0 0 0 . . . λtn


S−1

The probability vector will not change if P (t+ 1) = P (t) so that from (4.5.33)

(I − A)P (t) = 0

Thus if P is the eigenvector of the matrix A corresponding to unit eigenvalue, then P
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does not change i.e. if the system start with probability vector P at time 0 , it will

always remain in this state. Even if the system starts from any other probability vector,

it will ultimately be described by the probability vector P as t→∞.

As a special case, suppose we have a machine which can be in two states, working or

non-working. Let the probability of its transition from working to non-working be α, of

its transition from non-working to working be β, then the transition probability matrix

A is obtained from

working nonworking

working

nonworking

 1− α β

α 1− β


The system of difference equations is

p1(t+ 1) = p1(t)(1− α) + p2(t)β

p2(t+ 1) = p1(t)α + p2(t)(1− β) p1(t+ 1)

p2(t+ 1)

 =

 1− α β

α 1− β


 p1(t)

p2(t)


The eigenvalues of the matrix A is given by

∣∣∣∣∣∣∣
1− α− λ β

α 1− β − λ

∣∣∣∣∣∣∣ = 0 or (λ− 1)(λ− 1− α− β) = 0

The eigenvector corresponding to the unit eigenvalue is β/(α+β), α/(α+β) and as such

ultimately the probability of the machines being found in working order is β/(α + β)

and the probability of its being found in a nonworking state is α/(α + β).

4.5.2 Gambler’s Ruin Problems

Let a gambler with capital n dollars play against an infinitely rich adversary. Let the

probability of his winning and losing a unit dollar in any game be p and q respectively
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where p+ q = 1 and let pn be the probability of his being ultimately ruined.

At the next game, the probability of his winning is p and if he wins, his capital would

become n+ 1 and the probability of his ultimate ruin would be pn+1. On the other hand

if he loses at the next game, the probability for which is q, his capital would become

n − 1 and the probability of his ultimate ruin would be pn−1, so that we get the linear

difference equation of the second order

pn = ppn+1 + qpn−1 (4.5.34)

The auxiliary equation for this is

pλ2 − λ+ (1− p) = 0

or p(λ− 1)
(
λ− 1− p

p

)
= 0

As such the solution of (4.5.34) is

pn = A+B

(
q

p

)n
(4.5.35)

Now let the gambler decide to stop this game when his capital becomes a dollars so

that the probability of his being ruined when his starting capital is a dollars is zero i.e.

pa = 0. In the same way when his starting capital is zero, he is already ruined, so we

put p0 = 1. Using

p0 = 1, pa = 0

(4.5.35) gives

pn = (q/p)a − (q/p)n
(q/p)a − 1

Now let Dn denote the expected number of games before the gambler is ruined. If

he wins at the next game, his capital becomes n+ 1 and the expected number of games

would then be Dn+1 and if he loses, his capital becomes n− 1 and the expected number

of games would be only Dn−1. As such, we get
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Dn = pDn+1 + qDn−1 + 1 (137)

with boundary conditions

D0 = 0, Da = 0 (138)

This gives the solution

Dn = n

q − p
− a

q − p
1− (q/p)n
1− (q/p)a

Let us sum up:

• Markov chains.

• Gamblers ruin problems.

Check your progress:

1. What are the two states of machine in Markovs chain Problem?

2. What is the solution of the Gambler’s Ruin Problems?

Summary:

In this unit, we introduced to simple models through difference equations. Also, studied

the basic theory of linear difference equations with constant coefficients. In addition,

we modelled in economics and finance-population dynamics and genetics. Finally, we

solved simple problems.
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Glossary:

Linear difference equation,Complementary function, Particular solution, Economics, Fi-

nances, Harrod model, Cobweb model.

Self Assessment Questions

1. Solve and discuss the behavior of each solution as t→∞ , xt+2− 7xt+1 + 12xt = 0

2. Discuss the stability of the system xt+3 + 9xt+2 − 5xt+1 + 2xt = 0

3. What is the result of Samuelson’s Interaction Models?

4. Find the four stable eight-period fixed points.

5. Find the condition for the existence of a three-period fixed point.

6. In a game of chance, the probability of a person winning a second game after losing

the first game is a and the probability of his losing a second game after winning

the first game is p. Find the ultimate chance of winning.

Exercises

1. Prove that if the sum of the elements of each column of a square matrix with

non-negative elements is less than unity, then all the characteristic roots of this

matrix have magnitude less than unity.

2. Write explicitly the conditions that all roots of a0λ
2 + a1λ + a2 = 0 are less than

unity in magnitude.

3. Show that the necessary and sufficient conditions for both roots of m2 +a1m+a2 =

0 to be less than unity in absolute magnitude are 1 + a1 + a2 > 0, 1 − a1 + a2 >

0, 1− a2 > 0

4. Find the characteristic equation for the Leslie matrix and show that it always has

a positive real root. Find the condition that this root is less than unity.
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5. Show that if p = q = 1/2, the solution of Gamblers Ruin problem is

pn = 1− n/a

Answers for check your progress

Section 4.1

1. Population Growth Model, Logistic Growth Model,Prey-Predator Model,Competition

Model,Simple Epidemics Model.

Section 4.2

1. Finding the Linear difference equations by solving the complete function, the par-

ticular solution,Obtaining Complementary Function by Use of Matrices, Solution

of a System of Linear Homogeneous Difference Equations with Constant Coeffi-

cients, Solution of Linear Difference Equations by Using Laplace Transform, Solu-

tion of Linear Difference Equations by Using z-Transform, etc.,

Section 4.3

1. The models proposed are The Harrod Model,The Cobweb Model,Samuelson’s In-

teraction Models .

2. Savings made by the people in a country depend on the national income,The

investment depends on the difference between the income of the current year and

the last year, All the savings made are invested.

3. Amount of the commodity produced this year and available for sale is a linear

function of the price of the commodity in the last year,The price of the commodity

this year is a linear function of the amount available this year.
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Section 4.4

1. One period fixed point, two period fixed point, 2n Period fixed point, Fixed point

over its period.

2. Hardy- Weinberg Law, Improvement of Plants through Elimination of Recessives.

Section 4.5

1. Working and non working

2. probability of his ultimate ruin would be pn−1, so that we get the linear difference

equation of the second order

pn = ppn+1 + qpn−1

The auxiliary equation for this is

pλ2 − λ+ (1− p) = 0

or

p(λ− 1)
(
λ− 1− p

p

)
= 0

As such the solution is

pn = A+B

(
q

p

)n
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Unit 5

Mathematical Modelling Through Graphs

Objectives:

• Introduce to simple models through graphs.

• To discuss the mathematical modelling in terms of directed graphs, signed graphs,

and weighted digraphs.

• To solve simple problems in graphs.

5.1 Mathematical Modelling through graphs

5.1.1 Qualitative Relations in Applied Mathematics

It has been stated that ”Applied Mathematics is nothing but solution of differential

equations”. This statement is wrong on many counts:

(i) Applied Mathematics also deals with solutions of difference, differential-difference,

integral, integro-differential, functional and algebraic equations.

(ii) Applied Mathematics is equally concerned with inequations of all types.

(iii) Applied Mathematics is also concerned with mathematical modelling; in fact

mathematical modelling has to precede solution of equations.

(iv) Applied Mathematics also deals with situations which cannot be modelled in

terms of equations or inequations; one such set of situations is concerned with qualitative

relations.
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Mathematics deals with both quantitative and qualitative relationships. Typical

qualitative relations are:

y likes x, y hates x, y is superior to x, y is subordinate to x, y belongs to same political

party as x, set y has a non-null intersection with set x; point y is joined to point x by a

road, state y can be tansformed into state x, team y has defeated team x, y is father of

x, course y is a prerequisite for course x, operation y has to be done before operation x,

species y eats species x, y and x are connected by an airline, y has a healthy influence

on x, any increase of y leads to a decrease in x, y belongs to same caste as x, y and x

have different nationalities and so on.

Such relationships are very conveniently represented by graphs where a graph consists

of a set of vertices and edges joining some or all pairs of these vertices.

5.1.2 The Seven Bridges Problem

There are four land masses A,B,C,D which are connected by seven bridges numbered

1 to 7 across a river (Figure 5.1). The problem is to start from any point in one of

the land masses, cover each of the seven bridges once and once only and return to the

starting point.

Figure 5.1

Figure 5.2
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There are two ways of attacking this problem. One method is to try to solve the

problem by walking over the bridges. Hundreds of people tried to do so in their evening

walks and failed to find a path satisfying the conditions of the problem.

A second method is to draw a scale map of the bridges on paper and try to find a

path by using a pencil.

It is at this stage that concepts of mathematical modelling are useful. It is obvious

that the sizes of the land masses are unimportant, the lengths of the bridges or even

whether these are straight or curved are irrelevant.

What is relevant information is that A and B are connected by two bridges 1 and 2,

B and C are connected by two bridges 3 and 4, B and D are connected by one bridge

number 5, A and D are connected by bridge number 6 and C and D are connected by

bridge number 7.

All these facts are represented by the graph with four vertices and seven edges in

Figure 5.2. If we can trace this graph in such a way that we start with any vertex and

return to the same vertex and trace every edge once and once only without lifting the

pencil from the paper, the problem can be solved.

Again trial and method cannot be satisfactorily used to show that no solution is

possible.

The number of edges meeting at a vertex is called the degree of that vertex. We

note that the degrees of A,B,C,D are 3, 5, 3, 3 respectively and each of these is an odd

number.

If we have to start from a vertex and return to it, we need an even number of edges

at that vertex. Thus it is easily seen that Konigsberg bridges problem cannot be solved.

This example also illustrates the power of mathematical modelling.

5.1.3 Some Types of Graphs

A graph is called complete if every pair of its vertices is joined by an edge (Figure 5.3).

A graph is called a directed graph or a digraph if every edge is directed with an

arrow. The edge joining A and B may be directed from A to B or from B to A. If an

edge is left undirected in a digraph, it will be assumed to be directed both ways (Figure

5.4).
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Figure 5.3

Figure 5.4

Figure 5.5

A graph is called a signed graph if every edge has either a plus or minus sign associated

with it (Figure 5.5).
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Figure 5.6

A digraph is called a weighted digraph if every directed edge has a weight (giving

the importance of the edge) associated with it (Figure 5.6). We may also have digraphs

with positive and negative numbers associated with edges. These will be called weighted

signed digraphs.

5.1.4 Nature of Models in Terms of Graphs

In all the applications we shall consider, the length of the edge joining two vertices will

not be relevant. It will not also be relevant whether the edge is straight or curved. The

relevant facts would be

(a) which edges are joined;

(b) which edges are directed and in which direction(s);

(c) which edges have positive or negative signs associated with them;

(d) which edges have weights associated with them and what these weights are.

Let us sum up:

• Qualitative relations in applied mathematics.

• The seven bridges problem.

• Character of models in relation to graphs.
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Check your progress:

1. Is it possible or impossible to solve the seven bridges of konigsberg problem?

2. What are the types of graphs we studied in this section?

3. What is the nature of the models in terms of Graphs?

5.2 Mathematical Models in Directed Graphs

5.2.1 Representing Results of Tournaments

The graph (Figure 5.7) shows that

Figure 5.7

(i) Team A has defeated teams B, C, E.

(ii) Team B has defeated teams C,E.

(iii) Team E has defeated D.

(iv) Matches between A and D,B and D,C and D and C and E have yet to be

played.

5.2.2 One-Way Traffic Problems

The road map of a city can be represented by a directed graph. If only oneway traffic is

allowed from point a to point b, we draw an edge directed from a to b.
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If traffic is allowed both ways, we can either draw two edges, one directed from a to

b and the other directed from b to a or simply draw an undirected edge between a and

b.

The problem is to find whether we can introduce one-way traffic on some or all of

the roads without preventing persons from going from any point of the city to any other

point.

In other words, we have to find when the edges of a graph can be given direction in

such a way that there is a directed path from any vertex to every other.

It is easily seen that one-way traffic on the road DE cannot be introduced without

disconnecting the vertices of the graph (Figure 5.8).

Figure 5.8

Figure 5.9

In Figure 5.8, DE can be regarded as a bridge connecting two regions of the town. In

Figure 5.9 DE can be regarded as a blind street on which a two-way traffic is necessary.

Edges like DE are called separating edges, while other edges are called circuit edges.

It is necessary that on separating edges, two-way traffic should be permitted. It can also

be shown that this is sufficient. In other words, the following can be established:

If G is an undirected connected graph, then one can always direct the circuit edges

of G and leave the separating edges undirected (or both way directed) so that there is a
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directed path from any given vertex to any other vertex.

5.2.3 Genetic Graphs

In a genetic graph, we draw a directed edge from A to B to indicate that B is the child

of A.

In general each vertex will have two incoming edges, one from the vertex representing

the father and the other from the vertex representing the mother.

If the father or mother is unknown, there may be less then two incoming edges. Thus

in a genetic graph, the local degree of incoming edges at each vertex must be less than

or equal to two.

This is a necessary condition for a directed graph to be a genetic graph, but it is not

a sufficient condition.

Thus Figure 5.10 does not give a genetic graph inspite of the fact that the number

of incoming edges at each vertex does not exceed two.

Suppose A1 is male, then A2 must be female, since A1, A2 have a child B1. Then A3

must be male, since A2, A3 have

Figure 5.10

Figure 5.10 a child B2. Now A1, A3 being both males cannot have a child B3.

5.2.4 Senior-Subordinate Relationship

If a is senior to b, we write aSb and draw a directed edge from a to b. Thus the

organisational structure of a group may be represented by a graph like the following
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[Figure 5.11].

Figure 5.11

The relationship S satisfies the following properties:

(i) ∼ (aSa) i.e. no one is his own senior

(ii) aSb =∼ (bSa) i.e. a is senior to b implies that b is not senior to a.

(iii) aSb, bSc⇒ aSc i.e. if a is senior to b and b is senior to c, then a is senior to c.

The following can easily be proved: ”The necessary and sufficient condition that the

above three requirements hold is that the graph of an organisation should be free of

cycles”.

We want now to develop a measure for the status of each person. The status m(x)

of the individual should satisfy the following reasonable requirements.

(i) m(x) is always a whole number

(ii) If x has no subordinate, m(x) = 0

(iii) If, without otherwise changing the structure, we add a new individual subordi-

nate to x, then m(x) increases

(iv) If, without otherwise changing the structure, we move a subordinate of a to a

lower level relative to x, then m(x) increases.

A measure satisfying all these criteria was proposed by Harary.

We define the level of seniority of x over y as the length of the shortest path from x

to y.

To find the measure of status of x, we find n1, the number of individuals who are one

level below x, n2 the number of individuals who are two levels below x and in general,

we find nk the number of individuals who are k levels below x.

Then the Harary measure h(x) is defined by
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h(x) =
∑
k

knk (1)

It can be shown that among all the measure which satisfy the four requirements given

above, Harary measure is the least.

If however, we define the level of senority of x over y as the length of the longest

path from x to y, and then find H(x) = ∑
k knk, we get another measure which will be

the largest among all measures satisfying the four requirements.

Problem 5.2.1. Determine Harary measure for the following directed graph.

Figure 5.12

Solution

For Figure 5.12, we get

h(a) = 1.2 + 4.2 + 2.3 = 16 H(a) = 1.1 + 3.2 + 2.3 + 2.4 = 21

h(b) = 1.3 + 2.4 = 11 H(b) = 2.1 + 2.2 + 2.3 + 1.4 = 16

h(c) = 1.2 + 1.2 = 4 H(c) = 1.1 + 1.2 + 1.3 = 6

h(d)=1.1=1 H(d)=1.1=1

h(e)=1.3=3 H(e)=1.2+2.1=4

h(f)=1.1=1 H(f)=1.1=1

h(g)=1.2=2 H(g)=1.2=2

h(k)=0 H(k)=0

h(l)=0 H(l)=0
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5.2.5 Food Webs

Problem 5.2.2. Draw a food web graph.

Solution

Here aSb if a eats b and we draw a directed edge from a to b. Here also ∼ (aSa) and

aSb⇒∼ (bSa). However the transitive law need not hold. Thus consider the food web

in Figure 5.13. Here fox eats bird, bird eats grass, but fox does not eat grass.

Figure 5.13

We can however calculate measure of the status of each species in this food web by

using (1)h( bird ) = 2, h( fox ) = 4, h( insect ) = 1, h (grass ) = 0, h( deer ) = 1.

5.2.6 Communication Networks

Problem 5.2.3. How directed graphs can serve as a model for a communication net-

work?

Solution

A directed graph can serve as a model for a communication network. Thus consider

the network given in Figure 5.14.

If an edge is directed from a to b, it means that a can communicate with b.

In the given network e can communicate directly with b, but b can communicate with

e only indirectly through c and d.

However every individual can communicate with every other individual.

Our problem is to determine the importance of each individual in this network. The

importance can be measured by the fraction of the messages on an average that pass

through him.

In the absence of any other knowledge, we can assume that if an individual can

send message direct to n individuals, he will send a message to any one of them with

163



Figure 5.14

probability 1/n. In the present example, the communication probability matrix is

No individual is to send a message to himself and so all diagonal elements are zero.

Since all elements of the matrix are non-negative and the sum of elements of every

row is unity, the matrix is a stochastic matrix and one of its eigenvalues is unity. The

corresponding normalised eigenvector is [11/45, 13/45, 3/10, 1/10, 1/15].

In the long run, these fractions of messages will pass through a, b, c, d, e respectively.

Thus we can conclude that in this network, c is the most important person.

If in a network, an individual cannot communicate with every other individual either

directly or indirectly, the Markov chain is not ergodic and the process of finding the

importance of each individual breaks down.

5.2.7 Matrices Associated with a Directed Graph

Problem 5.2.4. How matrices are associated with a directed graph in mathematical

modelling?

Solution

For a directed graph with n vertices, we define the n×n matrix A = (aij) by aij = 1

if there is an edge directed from i to j and aij = 0 if there is no edge directed from i to
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j.

Thus the matrix associated with the graph of Figure 5.15 is given by

Figure 5.15

We note that

(i) the diagonal elements of the matrix are all zero

(ii) the number of non-zero elements is equal to the number of edges

(iii) the number of non-zero elements in any row is equal to the local outward degree

of the vertex corresponding to the row

(iv) the number of nonzero elements in a column is equal to the local inward degree

of the vertex corresponding to the column. Now

The element a(2)
ij gives the number of 2-chains from i to j. Thus from vertex 2 to

vertex 1 , there are two 2 -chains viz. via vertex 3 and vertex 4 .

We can generalise this result in the form of a theorem viz. ”The element a(2)
ij of A2

gives the number of 2-chains i.e. the number of paths with two-edges from vertex i to

vertex j ”.
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The theorem can be further generalised to ”The element a(m)
ij of Am gives the number

of m-chains i.e. the number of paths with m edges from vertex i to vertex j ”.

It is also easily seen that ”The i th diagonal element of A2 gives the number of

vertices with which i has symmetric relationship”.

From the matrix A of a graph, a symmetric matrix S can be generated by taking the

elementwise product of A with its transpose so that in our case

S = A× AT =



0 1 1 0

1 0 1 0

1 1 0 0

1 0 1 0


×



0 1 1 1

1 0 1 0

1 1 0 1

0 0 0 0


=



0 1 1 0

1 0 1 0

1 1 0 0

0 0 0 0


(5)

S obviously is the matrix of the graph from which all unreciprocated connections

have been eliminated.

In the matrix S (as well as in S2, S3, . . . ) the elements in the row and column

corresponding to a vertex which has no symmetric relation with any other vertex are all

zero.

5.2.8 Application of Directed Graphs to Detection of Cliques

Problem 5.2.5. Explain the application of directed graphs to detection of cliques.

Solution

A subset of persons in a socio-psychological group will be said to form a clique if

(i) every member of this subset has a symmetrical relation with every other member

of this subset

(ii) no other group member has a symmetric relation with all the members of the

subset (otherwise it will be included in the clique)

(iii) the subset has at least three members.

If other words a clique can be defined as a maximal completely connected subset of

the original group, containing at least three persons. This subset should not be properly

contained in any larger completely connected subset.

It the group consists of n persons, we can represent the group by n vertices of a graph.

The structure is provided by persons knowing or being connected to other persons.
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If a person i knows j, we can draw a directed edge from i to j. If i knows j and j

knows i, then we have a symmetrical relation between i and j.

With this interpretation, the graph of Figure 5.15 shows that persons 1, 2, 3 form

a clique. With very small groups, we can find cliques by carefully observing the corre-

sponding graphs.

For larger groups analytical methods based on the following results are useful:

(i) i is a member of a clique if the i th diagonal element of S3 is different from zero.

(ii) If there is only one clique of k members in the group, the corresponding k elements

of S3 will be (k − 1)(k − 2)/2 and the rest of the diagonal elements will be zero.

(iii) If there are only two cliques with k and m members respectively and there is

no element common to these cliques, then k elements of S3 will be (k − 1)(k − 2)/2,m

elements of S3 will be (m− 1)(m− 2)/2 and the rest of the elements will be zero.

(iv) If there are m disjoint cliques with k1, k2, . . . , km members, then the trace of S3

is 1
2
∑m
i=1 ki (ki − 1) (ki − 2).

(v) A member is non-cliquical if only if the corresponding row and column of S2×S

consists entirely of zeros.

Let us sum up:

• One-way traffic problems.

• Genetic graphs.

• Senior-subordinate relationship.

• Food webs.

• Communication networks.

• Matrices connected to a directed graph.

• Utilizing directed graphs for the identification of cliques.
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Check your progress:

1. What are the mathematical models in terms of Directed graphs?

2. How to develop a measure for the status of each person m(t)?

5.3 Mathematical Models in Signed Graphs

5.3.1 Balance of Signed Graphs

A signed (or an algebraic) graph is one in which every edge has a positive or negative

sign associated with it. Thus the four graphs of Figure 5.16 are signed graphs. Let

positive sign denote friendship and negative sign denote enemity, then in graph (i) A is

a friend of both B and C and B and C are

Figure 5.16

also friends. In graph (ii) A is friend of B and A and B are both jointly enemies of

C. In graph (iii), A is a friend of both B and C, but B and C are enemies. In graph

(iv) A is an enemy of both B and C, but B and C are not friends.

The first two graphs represents normal behaviour and are said to be balanced, while

the last two graphs represent unbalanced situations since if A is a friend both B and

C and B and C are enemies, this creates a tension in the system and there is a similar

tension when B and C have a commion enemy A, but are not friends of each other.

We define the sign of a cycle as the product of the signs of component edges. We

find that in the two balanced cases, this sign is positive and in the two unbalanced cases,

this is negative.

We say that a cycle of length three or a triangle is balanced if and only if its sign is

positive.

A complete algebraic graph is defined to be a complete graph such that between any

two edges of it, there is a positive or negative sign.
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A complete algebraic graph is said to be balanced if all its triangles are balanced. An

alternative definition states that a complete algebraic graph is balanced if all its cycles

are positive. It can be shown that the two definitions are equivalent.

A graph is locally balanced at a point a if all the cycles passing through a are

balanced. If a graph is locally balanced at all points of the graph, it will obviously be

balanced.

A graph is defined to be m-balanced if all its cycles of length m are positive. For an

incomplete graph, it is preferable to define it to be balanced if all its cycles are positive.

The definition in terms of triangle is not satisfactory, as there may be no triangles in

the graph.

5.3.2 Structure Theorem and Its Implications

Theorem 5.3.1. The following four conditions are equivalent:

(i) The graph is balanced i.e. every cycle in it is positive.

(ii) All closed line-sequences in the graph are positive i.e. any sequence of edges

starting from a given vertex and ending on it and possibly passing through the same

vertex more than once is positive.

(iii) Any two line-sequences between two vertices have the same sign.

(iv) The set of all points of the graph can be partitioned into two disjoint sets such

that every positive sign connects two points in the same set and every negative sign

connects two points of different sets.

Proof. The last condition has an interesting interpretation with possibility of application.

It states that if in a group of persons there are only two possible relationships viz.

liking and disliking and if the algebraic graph representing these relationships is bal-

anced, then the group will break up into two separate parties such that persons within

a party like one another, but each person of one party dislikes every person of the other

party.

If a balanced situation is regarded as stable, this theorem can be interpreted to imply

that a two-party political system is stable.
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5.3.3 Antibalance and Duobalance of a Graph

An algebraic graph is said to be antibalanced if every cycles in it has an even number of

positive edges. The concept can be obtained from that of a balanced graph by changing

the signs of the edges. It will then be seen that an algebraic graph is antibalanced if and

only if its vertices can be separated into two disjoint classes, such that each negative edge

joins two vertices of the same class and each positive edge joins persons from different

classes.

A signed graph is said to be duobalanced if it is both balanced and antibalanced.

5.3.4 The Degree of Unbalance of a Graph

Problem 5.3.2. Determine the degrees of unbalance of the following graphs.

Figure 5.17

Solution

For many purposes it is not enough to know that a situation is unbalanced. We may

be interested in the degree of unbalance and the possibility of a balancing process which

may enable one to pass from an unbalanced to a balanced graph.

The possibility is interesting as it can give an approach to group dynamics and

demonstrate that methods of graph theory can be applied to dynamic situations also.

Cartwright and Harary define the degree of balance of a group G to be the ratio of

the positive cycles of G to the total number of cycles in G.

This balance index obviously lies between 0 and 1. G1 has six negative triangles viz

(abc), (ade), (bcd), (bce), (bde), (cde) and has four positive triangles.

G2 has four negative triangles viz (abc), (abd), (bce) and (bde) and six positive triangle.

The degree of balance of G1 is therefore less than the degree of balance of G2.
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However in order to get a balanced graph from G1, we have to change the sign of

only two edges viz. bc and de and similarly to make G2 balanced we have to change the

signs of two edges viz bc and bd. From this point of view both G1 and G2 are equally

unbalanced (Figure 5.17)

Abelson and Rosenberg therefore gave an alternative definition. They defined the

degree of unbalance of an algebraic graph as the number of the smallest set of edges of

G whose change of sign produces a balanced graph.

The degree of an antibalanced complete algebraic graph (i.e. of a graph all of whose

triangles are negative) is given by [n(n− 2) + k]/4 where k = 1 if n is odd and k = 0 if

n is even.

It has been conjectured that the degree of unbalancing of every other complete alge-

braic graph is less than or equal to this value.

Let us sum up:

• Balance of signed graphs.

• Structure theorem.

• The Degree of unbalance of a graph.

Check your progress:

1. Explain the mathematical models in signed graphs.

2. What is the unbalanced definition given by Abelson and Rosenberg?

3. What are the conditions of Structure Theorem?
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Figure 5.18

5.4 Mathematical Modelling in Weighted Digraphs

5.4.1 Communication Networks with Known Probabilities of Communica-

tion

In the communication graph of Figure 5.18, we know that a can communicate with both

b and c only and in the absence of any other knowledge, we assigned equal probabilities

to a ’s communicating with b or c.

However we may have a priori knowledge that a ’s chances of communicating with b

and c are in the ratio 3 : 2, then we assign probability 6 to a’s communicating with b

and .4 to a ’s communicating with c.

Similarly we can associate a probability with every directed edge and we get the

weighted digraph (Figure 5.18) with the associated matrix

We note that the elements are all non-negative and the sum of the elements of every

row is unity so that B is a stochastic matrix and unity is one of its eigenvalues.

The eigenvector corresponding to this eigenvalues will be different from the eigen-

vector and so the relative importance of the individuals depends both on the directed

edges as well as on the weights associated with the edges.
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5.4.2 Weighted Digraphs and Markov Chains

A Markovian system is characterised by a transition probability matrix. Thus if the

states of a system are represented by 1, 2, . . . , n and pij gives the probability of transition

from the ith state to j th state, the system is characterised by the transition probability

matrix (t.p.m)

T =



p11 p12 . . . p1j . . . p1n

p21 p22 . . . p2j . . . p2n

. . . . . . . . . . . . . . . . . .

pi1 pi2 . . . pij . . . pin

. . . . . . . . . . . . . . . . . .

pn1 pn2 . . . pnj . . . pnn


(7)

Since ∑n
i=1 pij represents the probability of the system going from i th state to any

other state or of remaining in the same state, this sum must be equal to unity. Thus

the sum of elements of every row of a t.p.m. is unity.

Consider a set of N such Markov systems where N is large and suppose at any

instant NP1, NP2, . . . , NPn of these (P1 + P2 + . . .+ Pn = 1) are in states 1, 2, 3, . . . , n

respectively.

After one step, let the proportions in these states be denoted by P ′1, P ′2, . . . , P ′n, then

P ′1 = P1p11 + P2p21 + P3p31 + . . . . . .+ Pnpn1

P ′2 = P2p12 + P2p22 + P3p32 + . . . . . .+ Pnpn2

P ′n = P1p1n + P2p2n + P3p3n + . . . . . .+ Pnpnn

or P ′ = PT (9)

where P and P ′ are row matrices representing the proportions of systems in various

states before and after the step and T is the t.p.m.

We assume that the system has been in operation for a long time and the proportions

P1, P2, . . . , Pn have reached equilibrium values. In this case

P = PT or P (I − T ) = 0, (10)
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where I is the unit matrix. This represents a system of n equations for determining

the equilibrium values of P1, P2, . . . , Pn. If the equations are consistent, the determinant

of the coefficient must vanish i.e. |T − I| = 0. This requires that unity must be an

eigenvalue of T . However this, as we have seen already is true. This shows that an

equilibrium state is always possible for a Markov chain.

A Markovian system can be represented by a weighted directed graph. Thus consider

the Markovian system with the stochastic matrix

Its weighted digraph is given in Figure 5.19.

Figure 5.19

In this example d is an absorbing state or a state of equilibrium. Once a system

reaches the state d, it stays there for ever.

It is clear from Figure 5.19, that in whichever state, the system may start, it will

ultimately end in state d. However the number of steps that may be required to reach

d depends on chance.

Thus starting from c, the number of steps to reach d may be 1, 2, 3, 4, . . .; starting

from b the number of steps to reach d may be 2, 3, 4, . . . and starting for a, the number

of steps may be 3, 4, 5, . . . In each case, we can find the probability that the number of
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steps required is n and then we can find the expected number of steps to reach it.

Thus for the matrix

a is an absorbing state. Starting from b, we can reach a in 1, 2, 3, . . . , n steps with

probabilities (1/3), (1/3)(2/3), (1/3)(2/3)2, . . . , (1/3)(2/3)n−1, . . ., so that tbe expected

number of steps is

∞∑
n=1

n
1
3

(2
3

)n−1
= 3 (13)

5.4.3 General Communication Networks

So for we have considered communication networks in which the weight associated with

a directed edge represents the probability of communication along that edge. We can

however have more general networks e.g.

(a) for communication of messages where the directed edge represents the channel

and the weight represents the capacity of the channel say in bits per second

(b) for communication of gas in pipelines where the weights are the capacities, say

in gallons per hour

(c) communication roads where the weights are the capacities is cars per hour.

An interesting problem is to find the maximum flow rate, of whatever is being com-

municated, from any vertex of the communication network to any other. Useful graph-

theoretic algorithms for this have been developed by Elias. Feinstein and Shannon as

well as by Ford and Fulkerson.
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5.4.4 More General Weighted Digraphs

In the most general case, the weight associated with a directed edge can be positive

or negative. Thus Figure 5.20 means that a unit change at vertex 1 at time t causes

changes of -2 units at vertex 2 , of 2 units at vertex 4 and of 3 units at vertex 5 at time

t+ 1.

Similarly a change of 1 unit

Figure 5.20

Figure 5.20 at vertex 2 causes a change of -3 units at 3 vertex, 4 units at vertex 4

and of 2 units at vertex 5 and so on.

Given the values at all vertices at time t, we can find the values at times t + 1, t +

2, t+ 3, . . . The process of doing this systematically is known as the pulse rule.

These general weighted digraphs are useful for representing energy flows, monetary

flows and changes in environmental conditions.

5.4.5 Signal Flow Graphs

Problem 5.4.1. Represent the algebraic equations x1 = 4y0 + 6x2 − 2x3, x2 = 2y0 −

2x1 + 2x3, x3 = 2x1 − 2x2 weighted digraph.

Solution

The system of given algebraic equations
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x1 = 4y0 + 6x2 − 2x3

x2 = 2y0 − 2x1 + 2x3 (14)

x3 = 2x1 − 2x2

can be represented by the weighted digraph in Figure 5.21.

Figure 5.21

For solving for x1, we successively eliminate x3 and x2 to get the graphs in Figure

5.22. Finally we get

Figure 5.22

x1 = 4y0

We can similarly represent the solution of any number of linear equations graphically.

5.4.6 Weighted Bipartitic Digraphs and Difference Equations

Problem 5.4.2. Represent the system of difference equations xt+1 = a11xt+a12yt+a13zt,

yt+1 = a21xt + a22yt + a23zt, zt+1 = a31xt + a32yt + a33zt by weighted bipartite digraph.
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Solution

Consider the system of difference equations

xt+1 = a11xt + a12yt + a13zt

yt+1 = a21xt + a22yt + a23zt (15)

zt+1 = a31xt + a32yt + a33zt

This can be represented by a weighted bipartitic digraph (Figure 5.23). The weights

can be positive or negative.

Figure 5.23

Let us sum up:

• Communication networks with predetermined communication probabilities.

• Weighted digraphs and markov chains.

• General communication networks.
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• Signal flow graphs.

• Weighted bipartitic digraphs and difference equations.

Check your progress:

1. What is the expected number of steps in Markovian system?

2. What is the weighs of the Weighted Bipartitic Digraphs?

Summary:

In this unit, we introduced to simple models through graphs. Also, discussed the mathe-

matical modelling in terms of of directed graphs, signed graphs, and weighted digraphs.

Finally, we solved simple problems in graphs.

Glossary:

Seven bridges problem, One way traffic problem, Genetic graphs, Food webs, Directed

graphs, Signed graphs, Weighted digraphs.

Self Assessment Questions

1. In the Konigsberg problem suggest deletion or addition of minimum number of

bridges which may lead to a solution of the problem

2. An intelligence officer can communicate with each of his n subordinates and each

subordinate can communicate with him, but the subordinates cannot communicate

among themselves. Draw the graph and find the importance of each subordinate

relative to the officer.

3. Draw Balanced and unbalanced graph by Structure Theorem.
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4. Give the Graphical solution of

x1 − 2x2 + 3x3 = 2

3x1 + x2 − x3 = 3

x1 + 2x2 + x3 = 4

Exercises

1. A graph is called regular if each of its vertices has same degree r. Draw regular

graphs with 6 vertices and degree 5, 4 and 3.

2. Show that in Konigsberg, four one-way bridges will be enough to connect the four

land masses.

3. Enumerate all possible four-cliques.

4. Show that a signed graph has an idealised party structure if and only no circuit

has exactly one - sign.

5. Show that if all cycles of a signed graph are positive, then all its cycles are also

positive. State and prove its converse also.

Answers for check your progress

Section 5.1

1. With the original layout of the seven bridges of Konigsberg, it is impossible to find

a path that crosses each and every bridge once as both the people of Konigsberg

discovered by trial and error and as Euler discovered using proofs based in the

branch of mathematics known as graph theory. However, be adding or removing

one or more bridges a path can be found and can depending on the number and

choice of bridge result in a circuit being possible.

2. Complete graph, Directed graph or Digraph, Signed Graph, Weighted digraph,

weight signed digraph.
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3. (a) which edges are joined; (b) which edges are directed and in which direction(s);

(c) which edges have positive or negative signs associated with them; (d) which

edges have weights associated with them and what these weights are.

Section 5.2

1. Representing Results of Tournaments, One-Way Traffic Problems, Genetic Graphs,

Senior-Subordinate Relationship etc.

2. (i) m(x) is always a whole number (ii) If x has no subordinate, m(x) = 0 (iii) If,

without otherwise changing the structure, we add a new individual subordinate to

x, then m(x) increases (iv) If, without otherwise changing the structure, we move

a subordinate of a to a lower level relative to x, then m(x) increases.

Section 5.3

1. The mathematical models in signed graphs deals with Balance of Signed Graphs,

Structure Theorem and Its Implications, Antibalance and Duo balance of a Graph,

The Degree of Unbalance of a Graph.

2. The degree of unbalance of an algebraic graph as the number of the smallest set

of edges of G whose change of sign produces a balanced graph.

3. The graph is balanced i.e. every cycle in it is positive.(ii) All closed line-sequences

in the graph are positive i.e. any sequence of edges starting from a given vertex

and ending on it and possibly passing through the same vertex more than once is

positive. (iii) Any two line-sequences between two vertices’s have the same sign.

(iv) The set of all points of the graph can be partitioned into two disjoint sets such

that every positive sign connects two points in the same set and every negative

sign connects two points of different sets

Section 5.4

1. ∑∞n=1 n
1
3

(
2
3

)n−1
= 3

2. The weights can be positive or negative.
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